[1] Engle R F. Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation[J]. Econometrica, 1982, 50(4): 987-1007.[2] Bollerslev T. Generalized autoregressive conditional heteroskedasticity[J]. Journal of Econometrics, 1986, 31(3): 307-327.[3] Taylor S J.Modeling stochastic volatility: A review and comparative study[J]. Mathematical Finance, 1994, 4(2): 183-204.[4] Andersen T G, Bollerslev T. Answering the skeptics: Yes, standard volatility models do provide accurate forecasts[J]. International Economic Review, 1998, 34(9): 885-905.[5] Barndorff-Nielsen O E, Shephard N. Power and bipower variation with stochastic volatility and jumps[J]. Journal of Financial Econometrics, 2004, 2(1): 1-37.[6] Barndorff-Nielsen O E, Shephard N. Econometrics of testing for jumps in financial economics using bipower variation[J]. Journal of Financial Econometrics, 2006, 4(1):1-30.[7] Corsi F. A simple approximate long-memory model of realized volatility[J]. Journal of Financial Econometrics, 2009, 7(2): 174-196.[8] Andersen T G, Bollerslev T, Diebold F X. Roughing it up: Including jump components in the measurement, modeling and forecasting of return volatility[J]. Review of Economics and Statistics, 2007, 89(4): 701-720.[9] 王春峰, 姚宁, 房振明, 李晔. 中国股市已实现波动率的跳跃行为研究[J]. 系统工程, 2008, 26(2): 1-6.[10] 瞿慧, 李洁, 程昕. HAR族模型与GARCH族模型对不同期限波动率的预测精度比较——基于沪深300指数高频价格的实证分析[J]. 系统工程, 2015, 33(3): 32-37.[11] 杨科, 田凤平, 林洪. 跳跃的估计、股市波动率的预测以及预测精度评价[J]. 中国管理科学, 2013, 21(3): 50-60.[12] 陈浪南, 杨科. 中国股市高频波动率的特征、预测模型以及预测精度比较[J]. 系统工程理论与实践, 2013, 33(2): 296-307.[13] 孙洁. 考虑跳跃和隔夜波动的中国股票市场波动率建模与预测[J]. 中国管理科学, 2014, 22(6): 114-124.[14] 马锋, 魏宇, 黄登仕, 张鹏云. 基于跳跃和符号跳跃变差的HAR-RV预测模型及其MCS检验[J]. 系统管理学报, 2015, 24(5): 700-710.[15] 吴恒煜, 夏泽安, 聂富强. 引入跳跃和结构转换的中国股市已实现波动率预测研究:基于拓展的HAR-RV模型[J]. 数理统计与管理, 2015, 34(6): 1111-1128.[16] 马锋, 魏宇, 黄登仕, 夏泽安. 基于马尔科夫状态转换和跳跃的高频波动率模型预测[J]. 系统工程, 2016, 34(1): 10-16.[17] Bollerslev T, Law T H, Tauchen G. Risk, jumps, and diversification[J]. Journal of Econometrics, 2008, 144(1): 234-256.[18] LahayeJ, Laurent S, Neely C J. Jumps, cojumps and macro announcements[J]. Journal of Applied Econometrics, 2011, 26(6), 893-921.[19] Gilder D, Shackleton M B, Taylor S J. Cojumps in stock prices: Empirical evidence[J]. Journal of Banking & Finance, 2014, 40(1): 443-459.[20] 欧丽莎, 袁琛, 李汉东. 中国股票价格跳跃实证研究[J]. 管理科学学报, 2011, 14(9): 60-66.[21] Hamilton J, Oscar J. A model of the federal funds rate target[J]. Journal of Political Economy, 2002, 110(5): 1135-1167.[22] Dungey M, Hvozdyk L. Cojumping: Evidence from the US treasury bond and futures markets[J]. Journal of Banking & Finance, 2012, 36(5): 1563-1575.[23] 赵华, 秦可佶. 股价跳跃与宏观信息发布[J]. 统计研究, 2014, 31(4): 79-89.[24] Hansen PR. A test for superior predictive ability[J]. Journal of Business & Economic Statistics, 2005, 23(4): 365-380.[25] 刘向丽, 程刚, 成思危, 等. 中国期货市场日内效应分析[J]. 系统工程理论与实践, 2008, (8): 63-80.[26] 赵秀娟, 魏卓, 汪寿阳. 基于日内效应的沪深300股指期货套利的分析[J]. 管理科学学报, 2015, 18(1): 73-86.[27] 王维国, 佘宏俊. 超高频数据的日内效应调整方法研究[J]. 中国管理科学, 2015, 23(6): 49-56.[28] 菀莹, 庄新田, 金秀. 中国股市的日内效应、长记忆性及多重分形性:基于价-量交叉相关性视角[J]. 系统管理学报, 2016, 25(1): 28-35.[29] Boudt K, Croux C, Laurent S. Robust estimation of intraweek periodicity in volatility and jump detection[J]. Journal of Empirical Finance, 2011, 18(2), 353-367.[30] 瞿慧. 基于交错取样门限多幂次变差的中国股市波动细分及非对称性建模[J]. 系统工程, 2014, 32(2): 32-39.[31] Maheu JM, McCurdy TH. News arrival, jump dynamics, and volatility components for individual stock returns[J]. The Journal of Finance, 2004, 59(2):755-793. |