[1] Deng Julong. Control problems of grey system[J]. System & Control Letter, 1982, 1(5):288-294.[2] Liu Sifeng, Lin Yi. Grey systems theory and applications[M].Berlin-Heidelburg.Springer, 2010.[3] 樊春玲, 张静, 金志华, 等. 一种新型的灰色RBF神经网络建模方法及其应用[J]. 系统工程与电子技术, 2005, 27(2):316-319.[4] Liu Lisang,Peng Xiafu, Zhou Jiehua. Ship rolling prediction based on gray RBF neural network[J]. Applied Mechanics and Materials, 2011, 48-49:1044-1048.[5] 唐万梅. 基于灰色支持向量机的新型预测模型[J]. 系统工程学报, 2006, 21(4):410-413.[6] Xu Sheng, Zhao Huifang, Lv Xuanli. A Grey SVM based model for patent application filings forecasting[C]//Proceealings of IEEE International Conference on Fuzzy Systems,Hongkong,China,June 1-6,2008. 2008:225-230.[7] 章杰宽. 智能组合预测方法及其应用[J].中国管理科学, 2014, 22(3):26-33.[8] 于志军, 杨善林, 章政,等. 基于误差校正的灰色神经网络股票收益率预测[J]. 中国管理科学, 2015, 23(12):20-26.[9] 宋中民, 邓聚龙. 反向累加生成及灰色GOM (1,1)模型[J]. 系统工程, 2001, 19(1):66-69.[10] 杨保华, 张忠泉. 倒数累加生成灰色GRM (1, 1)模型及应用[J]. 数学的实践与认识, 2003, 33(10):21-26.[11] 曾祥艳, 肖新平. 累积法GM (2, 1)模型及其病态性研究[J]. 系统工程与电子技术, 2006, 28(4):542-544.[12] 肖新平, 刘军, 郭欢. 广义累加灰色预测控制模型的性质及优化[J]. 系统工程理论与实践, 2014, 34(6):1547-1556.[13] Wu Lifeng, Liu Sifeng, Yao Ligen, et al. Grey system model with the fractional order accumulation[J]. Communications in Nonlinear Science and Numerical Simulation, 2013,18(7):1775-1785.[14] 吴利丰, 刘思峰, 刘健.灰色GM (1, 1)分数阶累积模型及其稳定性[J]. 控制与决策, 2014, 29(5):919-924.[15] Xia Min, Wong W K. A seasonal discrete grey forecasting model for fashion retailing[J]. Knowledge-Based Systems, 2014, 57:119-126.[16] 钱吴永, 党耀国, 刘思峰.含时间幂次项的灰色GM (1, 1, tα)模型及其应用[J]. 系统工程理论与实践, 2012, 32(10):2247-2252.[17] 谢乃明, 刘思峰.离散GM(1,1)模型与灰色预测模型建模机理[J]. 系统工程理论与实践, 2005, 25(1):93-99.[18] 王正新, 党耀国, 练郑伟. 无偏GM(1,1)幂模型其及应用[J]. 中国管理科学, 2011, 19(4):144-151.[19] Broomhead D S, Lowe D. Radial basis functions, multi-variable functional interpolation and adaptive networks[R]. Royal Signals and Radar Establishment, 1988.[20] Reiner P, Wilamowski B M. Efficient incremental construction of RBF networks using quasi-gradient method[J]. Neurocomputing, 2015,150(B):349-356.[21] Cortes C, Vapnik V. Support-vector networks[J]. Machine Learning, 1995, 20(3):273-297.[22] Lingras P, Butz C J. Rough support vector regression[J]. European Journal of Operational Research, 2010, 206(2):445-455.[23] Lapin M, Hein M, Schiele B. Learning using privileged information:SVM+ and weighted SVM[J]. Neural Networks, 2014,(53):95-108. |