[1] Fama E F, French K R. Common risk factors in the returns on stocks and bonds[J]. Journal of Financial Economics, 1993, 33(1): 3-56.[2] Acharya V V, Pedersen L H. Asset pricing with liquidity risk[J]. Journal of Financial Economics, 2005, 77(2): 375-410.[3] Fama E F, French K R. Size, value, and momentum in international stock returns[J]. Journal of Financial Economics, 2012, 105(3): 457-472.[4] Fama E F, French K R. A five-factor asset pricing model[J]. Journal of Financial Economics, 2015, 116(1): 1-22.[5] Kelly B, Jiang Hao. Tail risk and asset prices[J]. Review of Financial Studies, 2014, 27(10): 2841-2871.[6] 蒋艳辉,马超群,熊希希. 创业板上市公司文本惯性披露、信息相似度与资产定价——基于Fama-French改进模型的经验分析[J]. 中国管理科学, 2014,22(08): 56-63.[7] 陈国进, 刘晓群, 谢沛霖, 等. 已实现跳跃波动与中国股市风险溢价研究——基于股票组合视角[J]. 管理科学学报, 2016, 19(6): 98-113.[8] Post T, van Vliet P. Downside risk and asset pricing[J]. Journal of Banking & Finance, 2006, 30(3): 823-849.[9] Estrada J. Mean-semivariance behavior: Downside risk and capital asset pricing[J]. International Review of Economics & Finance, 2007, 16(2): 169-185.[10] Chen D, Chen C, Chen Jianguo. Downside risk measures and equity returns in the NYSE[J]. Applied Economics, 2009, 41: 1055-1070.[11] Alles L, Murray L. Rewards for downside risk in Asian markets[J]. Journal of Banking & Finance, 2013, 37(7): 2501-2509.[12] Bansal R, Shaliastovich I. Learning andasset-price jumps[J]. Review of Financial Studies, 2011, 24(8): 2738-2780.[13] Todorov V, Bollerslev T. Jumps and betas: A new framework for disentangling and estimating systematic risks[J]. Journal of Econometrics, 2010, 157(2): 220-235.[14] 左浩苗,刘振涛. 跳跃风险度量及其在风险—收益关系检验中的应用[J]. 金融研究, 2011(10): 170-184.[15] Maheu J M, Mccurdy T H, Zhao Xiaofei. Do jumps contribute to the dynamics of the equity premium?[J]. Journal of Financial Economics, 2013, 110(2): 457-477.[16] 于志军, 杨善林, 章政, 等. 基于误差校正的灰色神经网络股票收益率预测[J]. 中国管理科学, 2015, 23(12): 20-26.[17] McLean R D, Pontiff J. Does academic research destroy stock return predictability?[J]. The Journal of Finance, 2016, 71(1): 5-32.[18] 张贵生, 张信东. 基于近邻互信息的 SVM-GARCH 股票价格预测模型研究[J]. 中国管理科学, 2016, 24(9): 11-20.[19] Gong Xu, Wen Fenghua, Xia X H, et al. Investigating the risk-return trade-off for crude oil futures using high-frequency data[J]. Applied Energy, 2017, 196: 152-161.[20] Barndorff-Nielsen O E, Kinnebrock S, Shephard N. Measuring downside risk— realised semivariance[Z]. Research Paper,Center for Research in Econometric Analysis of Time Series,2008.[21] Andersen T G, Bollerslev T. Answering the Skeptics: Yes, ARCH models do provide good volatility forecasts[J]. International Economic Review, 1998, 4: 885-905.[22] Gong Xu, He Zhifang, Li Pu, et al. Forecasting return volatility of the CSI 300 Index using the stochastic volatility model with continuous volatility and jumps[J]. Discrete Dynamics in Nature and Society, 2014, 2014: 1-10.[23] Wen F, Gong X, Cai S. Forecasting the volatility of crude oil futures using HAR-type models with structural breaks[J]. Energy Economics, 2016, 59: 400-413.[24] 孙洁. 考虑跳跃和隔夜波动的中国股票市场波动率建模与预测[J]. 中国管理科学, 2014, 22(6): 114-124.[25] 唐勇, 林欣. 考虑共同跳跃的波动建模: 基于高频数据视角[J]. 中国管理科学, 2015, 23(8): 46-53.[26] Patton A J, Sheppard K. Good volatility, bad volatility: signed jumps and the persistence of volatility[J]. Review of Economics and Statistics, 2015, 97(3): 683-697.[27] 唐勇. 金融资产跳跃检验方法实证比较[J]. 中国管理科学, 2012,20(S1): 290-299. |