[1] Grabisch M. The application of fuzzy integrals in multicriteria decision making[J]. European Journal of Operational Research, 1996, 89(3):445-456.[2] 赵树平,梁昌勇,罗大伟.基于VIKOR和诱导广义直觉梯形模糊Choquet积分算子的多属性群决策方法[J].中国管理科学, 2016, 24(6):132-142.[3] 常志鹏,程龙生.灰模糊积分关联度决策模型[J].中国管理科学, 2015, 23(11):105-111.[4] Grabisch M, Labreuche C. A decade of application of the Choquet and Sugeno integrals in multi-criteria decision aid[J]. Annals Operations Research, 2010, 175(1):247-286.[5] Marichal J L, Roubens M. Determination of weights of interacting criteria from a reference set[J]. European Journal of Operational Research, 2000, 124(3):641-650.[6] Grabisch M, Kojadinovic I, Meyer P. A review of methods for capacity identification in Choquet integral based multi-attribute utility theory:Applications of the Kappalab R package[J]. European Journal of Operational Research, 2008, 186(2):766-785.[7] Anath R K, Maznah M K, Engku M N E A B. A short survey on the usage of Choquet integral and its associated fuzzy measure in multiple attribute analysis[J]. Procedia Computer Science, 2015, 59:427-434.[8] Sugeno M. Theory of integral and its applications[D]. Tokyo:Tokyo Institute of Technology,1974.[9] David S, Martin H. Dynamic classifier aggregation using interaction-sensitive fuzzy measures[J]. Fuzzy Sets and Systems, 2015, 270:25-52.[10] 武建章, 张强. 基于2-可加模糊测度的多准则决策方法[J]. 系统工程理论与实践, 2010, 30(7):1229-1237.[11] Grabisch M. K-order additive discrete fuzzy measure and their representation[J]. Fuzzy Sets and Systems, 1997, 92(2):167-189.[12] 章玲,周德群.基于k-可加模糊测度的多属性决策分析[J].管理科学学报, 2008, 11(6):18-24.[13] Yager R R. Modeling multi-criteria objective functions using fuzzy measure[J], Information Fusion, 2015, 29(3):105-111.[14] Wu Yunna, Geng Shuai, Xu Hu, et al. Study of decision framework of wind farm project plan selection under intuitionistic fuzzy set and fuzzy measure environment[J]. Energy Conversion and Management, 2014, 87:274-284.[15] Yang J L, Chiu H N, Tzeng G H, et al. Vendor selection by integrated fuzzy MCDM techniques with independent and interdependent relationships[J]. Information Sciences, 2008, 178(21):4166-4183.[16] Chen T Y, Wang J C. Identification of λ-fuzzy measures using sampling design and genetic algorithms[J]. Fuzzy Sets and Systems, 2001, 123(1):321-341.[17] Xu Xiaozhan, Martel J M, Lamond B F. A multiple criteria ranking procedure based on distance between partial preorders[J]. European Journal of Operational Research, 2001, 133(1):69-81.[18] Lahdelma R, Miettinen K, Salminen P. Ordinal criteria in stochastic multicriteria acceptability analysis (SMAA)[J]. European Journal of Operational Research, 2003, 147(1):117-127.[19] Punkka A, Salo A. Preference programming with incomplete ordinal information[J]. European Journal of Operational Research, 2013, 231(1):141-150.[20] Sarabando P, Dias L C. Simple procedures of choice in multicriteria problems without precise information about the alternatives' values[J]. Computer and Operations Research, 2010, 37(12):2239-2247.[21] Fitousi D. Dissociating between cardinal and ordinal and between the value and size magnitudes of coins[J]. Psychonomic Bulletin & Review, 2010, 17(6):889-894.[22] Ahn B S, Park K S. Comparing methods for multiattribute decision making with ordinal weights[J]. Computers & Operations Research, 2008, 35(5):1660-1670.[23] Bottomley P A, Doyle J R. A comparison of three weight elicitation methods:Good, better, and best[J]. Omega, 2001, 29(6):553-560.[24] Saaty T L. The analytic hierarchy process[M]. New York:McGraw-Hill, 1980.[25] Saaty T L. A scaling method for priorities in hierarchical structures[J]. Journal of Mathematical Psychology, 1977, 15(3):234-281. |