中国管理科学 ›› 2022, Vol. 30 ›› Issue (1): 77-87.doi: 10.16381/j.cnki.issn1003-207x.2019.1105
鲁万波, 亢晶浩
收稿日期:
2019-07-28
修回日期:
2020-03-04
出版日期:
2022-01-20
发布日期:
2022-01-29
通讯作者:
鲁万波(1977-),男(汉),贵州贵阳人,西南财经大学统计学院,教授、博士生导师,研究方向:金融计量、风险管理,Email:luwb@swufe.edu.cn.
E-mail:luwb@swufe.edu.cn
基金资助:
LU Wan-bo, KANG Jing-hao
Received:
2019-07-28
Revised:
2020-03-04
Online:
2022-01-20
Published:
2022-01-29
Contact:
鲁万波
E-mail:luwb@swufe.edu.cn
摘要: 假定日收益率服从多元有偏学生t分布、已实现协方差矩阵服从矩阵F分布,本文构建了一种新的得分驱动模型:GAS-SKST-F模型。在该有偏厚尾多元波动率模型中,我们基于广义自回归得分(GAS)模型的基本思想对收益率和已实现协方差矩阵进行联合动态设定,协方差矩阵的更新过程依赖于收益率分布和已实现协方差矩阵分布联合似然函数的得分函数。已实现协方差测度在协方差矩阵的更新过程中发挥了重要的作用。基于20支上证50成分股高频数据的实证分析研究结果显示,与GAS-N-Wishart模型和GAS-tF模型相比,无论样本内还是样本外,GAS-SKST-F模型有着更加良好的样本内估计和样本外预测能力。
中图分类号:
鲁万波, 亢晶浩. GAS-SKST-F模型及其在高频多元波动率预测中的应用[J]. 中国管理科学, 2022, 30(1): 77-87.
LU Wan-bo, KANG Jing-hao. GAS-SKST-F Model and Its Application in High Frequency Multivariate Volatility Forecast[J]. Chinese Journal of Management Science, 2022, 30(1): 77-87.
[1] Bauwens L, Laurent S, Rombouts J V K. Multivariate GARCH models: A survey[J]. Journal of Applied Econometrics,2006,21(1):79-109. [2] Andersen T G, Bollerslev T, Diebold F X, et al. Modeling and forecasting realized volatility[J]. Econometrica,2003,71(5): 579-625. [3] Engle R F, Gallo G M. A multiple indicators model for volatility using intra-daily data[J]. Journal of Econometrics,2006,131(3):3-27. [4] Shephard N, Sheppard K. Realising the future: forecasting with high-frequency-based volatility (HEAVY) models[J]. Journal of Applied Econometrics,2010,25(2):197-231. [5] Hansen P R, Huang Z, Shek H H. Realized GARCH: A joint model of returns and realized measures of volatility[J]. Journal of Applied Econometrics,2012,27(6):877-906. [6] 马锋,魏宇,黄登仕. 基于符号收益和跳跃变差的高频波动率模型[J]. 管理科学学报, 2017, 20(10):36-48.Ma Feng, Wei Yu, Huang Dengshi. Forecasting the realized volatility based on the signed return and signed jump variation[J]. Journal of Management Sciences in China,2017, 20(10):36-48. [7] 吴鑫育,李心丹,马超群. 门限已实现随机波动率模型及其实证研究[J]. 中国管理科学, 2017, 25(3): 10-19.Wu Xinyu, Li Xindan, Ma Chaoqun. Threshold realized stochastic volatility model and its empirical test[J]. Chinese Journal of Management Science,2017,25(3):10-19. [8] Golosnoy V, Gribisch B, Liesenfeld R. The conditional autoregressive wishart model for multivariate stock market volatility[J]. Journal of Econometrics,2012,167(1):211-223. [9] Paolo G, Hansen P R, Janus P, et al.Realized Wishart-GARCH: A score-driven multi-asset volatility model[J]. Journal of Financial Econometrics, 2019, 17(1):1-32. [10] Opschoor A, Janus P, Lucas A, et al. New HEAVY models for fat-tailed realized covariances and returns[J]. Journal of Business and Economic Statistics, 2018,36(4): 643-657. [11] 罗嘉雯, 陈浪南.多国股票市场的高频波动相关性研究[J]. 中国管理科学, 2018, 26(2):116-125.Luo Jiawen, Chen Langnan. The volatility co-movement of various stock markets based on high-frequency data[J].Chinese Journal of Management Science,2018,26(2):116-125. [12] Creal D, Koopman S J, André Lucas. Generalized autoregressive score models with applications[J]. Journal of Applied Econometrics, 2013, 28(5):777-795. [13] Blasques F, Koopman S J, LucasA. Information theoretic optimality of observation driven time series models for continuous responses[J]. Biometrika, 2015, 102(2):325-343. [14] Lucas A, Schwaab B, Zhang X. Conditional Euro area sovereign default risk[J]. Journal of Business and Economic Statistics, 2014, 32(2):271-284. [15] Creal D, Schwaab B, Koopman S, et al. Observation driven mixed measurement dynamic factor models with an application to credit risk[J]. Review of Economics and Statistics, 2014,96(5):898-915. [16] 王天一,黄卓.Realized GAS-GARCH及其在VaR预测中的应用[J]. 管理科学学报,2015, 18(5):79-86.Wang Tianyi, Huang Zhuo. Realized GAS-GARCH model and its application in Value-at-Risk forecast[J]. Journal of Management Sciences in China,2015, 18(5):79-86. [17] Oh D H, Patton A J. Time-varying systemic risk:Evidence from a dynamic copula model of CDS spreads[J]. Journal of Business andEconomic Statistics, 2018, 36(2):181-195. [18] 沈根祥, 邹欣悦.已实现波动GAS-HEAVY模型及其实证研究[J]. 中国管理科学, 2019, 27(1):1-10.Shen Genxiang, Zou Xinyue. GAS-HEAVY model for realized measures of volatility and returns[J]. Chinese Journal of Management Science, 2019, 27(1):1-10. [19] Lambert P, Laurent S. Modelling financial time series using GARCH-type models with a skewed student distribution for the innovations[R]. Working Paper,Université de Liège, 2001. [20] Gao Chunting, Zhou Xiaohua. Forecasting VaR and ES using dynamic conditional score models and skew student distribution [J]. Economic Modelling, 2016, 53:216-223. [21] Bauwens L, Laurent, S. A new class of multivariate skew densities with application to generalized autoregressive conditional heteroscedasticity models[J].Journal of Business and Economic Statistics, 2005,23(3):346-354. [22] Blasques F, Koopman S J, Lucas A. Maximum likelihood estimation for score-driven models[R]. Working Paper, Tinbergen Institute, 2017. |
[1] | 成思聪,王天一. 引入隔夜信息的期权定价模型研究[J]. 中国管理科学, 2024, 32(9): 1-10. |
[2] | 吴鑫育,谢海滨,马超群. 经济政策不确定性与人民币汇率波动率[J]. 中国管理科学, 2024, 32(8): 1-14. |
[3] | 于孝建,刘国鹏,刘建林,肖炜麟. 基于LSTM网络和文本情感分析的股票指数预测[J]. 中国管理科学, 2024, 32(8): 25-35. |
[4] | 倪宣明,郑田田,赵慧敏,武康平. 基于最优异质收益率因子的资产定价研究[J]. 中国管理科学, 2024, 32(8): 50-60. |
[5] | 蔡毅,唐振鹏,吴俊传,杜晓旭,陈凯杰. 基于灰狼优化的混频支持向量机在股指预测与投资决策中的应用研究[J]. 中国管理科学, 2024, 32(5): 73-80. |
[6] | 张雪彤,张卫国,王超. 发达市场与新兴市场的尾部风险[J]. 中国管理科学, 2024, 32(4): 14-25. |
[7] | 尹海员,寇文娟. 基于朴素贝叶斯法的投资者情绪度量及其对股票特质风险的影响[J]. 中国管理科学, 2024, 32(4): 38-47. |
[8] | 吴鑫育,姜晓晴,李心丹,马超群. 基于已实现EGARCH-FHS模型的上证50ETF期权定价研究[J]. 中国管理科学, 2024, 32(3): 105-115. |
[9] | 冯倩倩,孙晓蕾,郝俊. 基于状态转移回归的动态集成时序预测方法[J]. 中国管理科学, 2024, 32(2): 307-314. |
[10] | 盛积良,黄毅,李居超. 我国行业风险敞口与行业网络结构的相关性研究[J]. 中国管理科学, 2024, 32(2): 199-209. |
[11] | 白兰,魏宇. 投资者公共卫生事件关注度与我国行业股票市场信息溢出效应研究[J]. 中国管理科学, 2024, 32(1): 54-64. |
[12] | 孟斌,廉荣文隽,隋聪,匡海波. 重大事件是否影响了航运市场溢出传递的稳定性[J]. 中国管理科学, 2023, 31(11): 46-57. |
[13] | 王明涛,李茜. 融资融券降低了交易中的信息不对称程度吗?[J]. 中国管理科学, 2023, 31(10): 1-11. |
[14] | 郭延禄,罗公利,侯贵生,王晓彤. “种草”与“翻车”:网红直播带货的产品质量问题与治理研究[J]. 中国管理科学, 2023, 31(10): 162-174. |
[15] | 冯易,王杜娟,胡知能,崔少泽. 基于改进LightGBM集成模型的胃癌存活性预测方法[J]. 中国管理科学, 2023, 31(10): 234-244. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|