[1] 闫泓序, 余顺坤, 林依青. 我国工业电力用户价值画像模型构建与应用研究[J]. 中国管理科学, 2021, 29(10): 224-235.Yan Hongxu, Yu Shunkun, Lin Yiqing. Research on the construction and application of the customer value portrait model of industrial power enterprise in China[J]. Chinese Journal of Management Science, 2021, 29(10): 224-235. [2] 裘华东, 张云雷, 段光,等. 基于理想模糊物元的电力用户价值评价[J]. 技术经济, 2018, 37(7): 107-113.Qiu Huadong, Zhang Yunlei, Duan Guang, et al. Evaluation of power user value based on ideal fuzzy matter element[J]. Journal of Technology Economics, 2018, 37(7): 107-113. [3] 冯秋燕, 朱学芳. 社交媒体用户价值画像建模与应用研究[J]. 情报资料工作, 2019, 40(6): 73-80.Feng Qiuyan, Zhu Xuefang. Social media user value image modeling and application research[J]. Information and Documentation Services, 2019, 40(6): 73-80. [4] 冯建英, 王博, 吴丹丹, 穆维松, 田东. 用户画像技术与其在农业领域应用研究进展[J]. 农业机械学报, 2021, 52(S1): 385-395.Feng Jianying, Wang Bo, Wu Dandan, et al. User profile technology and its application in agriculture[J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(S1): 385-395. [5] 孙铁柱, 田琳. 基于CRT分类算法的用户画像分层模型——以银行借贷用户为例[J].情报科学, 2020, 38(9): 75-81.Sun Tiezhu, Tian Lin. Model of user layered profile based on CRT classification algorithm——Taking loan users of bank as an example[J]. Information Science, 2020, 38(9): 75-81. [6] 国家能源局. 国家能源局发布2021年全国电力工业统计数据[EB/OL].(2022-01-26) [2022-01-27]. http://www.nea.gov.cn/2022-01/26/c_1310441589.htm.National Energy Administration. The National Energy Administration releases the 2021 National Electricity Industry Statistics[EB/OL]. (2022-01-26) [2022-01-27]. http://www.nea.gov.cn/2022-01/26/c_1310441589.htm. [7] Ribeiro M T, Singh S, Guestrin C. “Why should I trust you?”: Explaining the predictions of any classifier[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, USA, August 24-27, Springer, 2016: 1135-1144. [8] 阎红灿, 张奉, 刘保相. 基于粒计算的粗决策规则抽取与约简[J]. 通信学报, 2016, 37(S1): 30-35.Yan Hongcan, Zhang Feng, Liu Baoxiang. Extraction and reduction of rough decision rule based on granular computing[J]. Journal on Communications, 2016, 37(S1): 30-35. [9] 纪霞, 李龙澍. 基于属性分辨度的最大相容块规则提取算法[J]. 控制与决策, 2013, 28(12): 1837-1842+1848.Ji Xia, Li Longshu. Rule extraction algorithm of maximum consistent block based on attribute resolution[J]. Control and Decision, 2013, 28(12): 1837-1842+1848. [10] 陈泽华, 宋波, 闫继雄,等. 基于概念格的不完备信息系统最简规则提取算法[J]. 控制与决策, 2019, 34(5): 1011-1017.Chen Zehua, Song Bo, Yan Jixiong, et al. Algorithm for extracting the simplest rules of incomplete information systems based on concept lattice[J]. Control and Decision, 2019, 34(5): 1011-1017. [11] Chen Xinying, Li Guanyu, Sun Yunhao. Rule extraction model based on decision dependency degree[J]. Mathematical Problems in Engineering, 2019, 2019(11-12): 1-16. [12] Hu Xiaohua, Cercone N. Discovering maximal generalized decision rules through horizontal and vertical data reduction[J]. Computational Intelligence, 2001, 4(17): 685-702. [13] Pawlak Z. Rough sets and decision algorithms[C]//Proceeding of the 2nd International Conference on Rough Sets and Current Trends in Computing, Banff, Canada, October 16-19, Springer, 2000: 30-45. [14] Pawlak Z, Skowron A. Rough sets: Some extensions[J]. Information Sciences, 2007, 177(1): 28-40. [15] Luxburg U V. A tutorial on spectral clustering[J]. Statistics and Computing, 2004, 17(4): 395-416. [16] Liang Shaoyi, Han Deqiang, Yang Yi. Cluster validity index for irregular clustering results[J]. Applied Soft Computing, 2020, 95: 106583. [17] Yan Zhenghu, Zhang Changfu, Jiang Xinguang, et al. Comparison of the full-discretization methods for milling stability analysis by using different high-order polynomials to interpolate both state term and delayed term[J]. International Journal of Advanced Manufacturing Technology, 2020, 108(1): 571-588. [18] Kerber R. Chimerge: Discretization of numeric attributes[C]//Proceedings of the 10th National Conference on Artificial Intelligence, San Jose, USA, July 12-16, AAAI Press/The MIT Press, 1992: 123-128. [19] 习近平. 习近平在第七十五届联合国大会一般性辩论上发表重要讲话[EB/OL]. (2020-09-22) [2022-02-09]. http://www.xinhuanet.com/politics/leaders/2020-09/22/c_1126527652.htm.Xi Jinping. Xi Jinping delivers an important speech at the general debate of the 75th session of the United Nations (UN) General Assembly[EB/OL]. (2020-09-22) [2022-02-09]. http://www.xinhuanet.com/politics/leaders/2020-09/22/c_1126527652.htm. [20] 李晖,刘栋,姚丹阳.面向碳达峰碳中和目标的我国电力系统发展研判[J].中国电机工程学报, 2021, 41(18): 6245-6259.Li Hui, Liu Dong, Yao Danyang. Analysis and reflection on the development of power system towards the goal of carbon emission peak and carbon neutrality[J]. Proceedings of the CSEE, 2021, 41(18): 6245-6259. [21] 肖先勇, 郑子萱. “双碳”目标下新能源为主体的新型电力系统:贡献、关键技术与挑战[J].工程科学与技术, 2022, 54(1): 47-59.Xiao Xianyong, Zheng Zixuan. New power systems dominated by renewable energy towards the goal of emission peak & carbon neutrality: Contribution, key techniques, and challenges[J]. Advanced Engineering Sciences, 2022, 54(1): 47-59. [22] 郑亚先, 杨争林, 冯树海, 等. 碳达峰目标场景下全国统一电力市场关键问题分析[J].电网技术, 2022, 46(1): 1-20.Zheng Yaxian, Yang Zhenglin, Feng Shuhai, et al. Key issue analysis in national unified power market under target scenario of carbon emission peak[J]. Power System Technology, 2022, 46(1): 1-20. [23] 刘潇, 王效俐. 基于K-means和邻域粗糙集的航空客户价值分类研究[J]. 运筹与管理, 2021, 30(3): 104-111.Liu Xiao, Wang Xiaoli. Value segmentation of airline customers based on K-means and neighborhood rough set[J]. Operations Research and Management Science, 2021, 30(3): 104-111. [24] 李京政, 杨习贝, 窦慧莉,等. 重要度集成的属性约简方法研究[J]. 智能系统学报, 2018, 13(3): 414-421.Li Jingzheng, Yang Xibei, Dou Huili, et al. Research on ensemble significance based attribute reduction approach[J]. CAAI Transactions on Intelligent Systems, 2018, 13(3): 414-421. [25] 曾孝文, 胡虚怀, 严权峰,等. 一种基于粗糙集理论的属性值约简改进算法[J]. 电子技术, 2017, 46(1): 1-3.Zeng Xiaowen, Hu Xuhuai, Yan Quanfeng, et al. An improved algorithm for attribute value reduction based on rough set theory[J]. Electronic Technology, 2017, 46(1): 1-3. [26] 余顺坤,闫泓序.基于确定性因子的启发式属性值约简模型[J].计算机应用, 2021, DOI: 10.11772/j.issn.1001-9081. 2021071344.Yu Shunkun, Yan Hongxu. Heuristic attribute value reduction model based on certainty factor[J]. Journal of Computer Applications, 2021, DOI: 10.11772/j.issn.1001-9081. 2021071344. [27] Kaufman L, Rousseeuw P J. Finding groups in data: An introduction to cluster analysis[M]. New York, Wiley, 2009. [28] Lawson, R G, Jurs P C. New index for clustering tendency and its application to 12 chemical problems[J]. Journal of Chemical Information and Computer Sciences, 1990, 30(1): 36-41. [29] Cebeci Z, Yildiz F. Comparison of Chi-square based algorithms for discretization of continuous chicken egg quality traits[J]. Journal of Agricultural Informatics, 2017, 8(1): 13-22.
|