[1] 欧阳红兵,黄亢,闫洪举.基于LSTM神经网络的金融时间序列预测[J].中国管理科学, 2020, 28(4):27-35.Ouyang Hongbing, Huang Kang, Yan Hongju. Prediction of financial time series based on LSTM neural network[J].Chinese Journal of Management Science, 2020, 28(4):27-35. [2] Gujarati D N, Porter D C. Basic econometrics [M]. NY, USA: Tata McGraw-Hill Education, 2009. [3] 苏振宇,龙勇,汪於.基于季节调整和Holt-Winters的月度负荷预测方法[J].中国管理科学,2019, 27(3):30-40.Su Zhenyu,Long Yong,Wang Yu.A hybrid monthly load forecasting method based on seasonal adjustment and Holt-Winters[J].Chinese Journal of Management Science,2019, 27(3):30-40. [4] Sun Xiaolei, Liu Mingxi, Sima Zeqian. A novel cryptocurrency price trend forecasting model based on LightGBM[J]. Finance Research Letters. 2020, 32: 101084. [5] Yu Lean, Zhao Yang, Tang Ling. A compressed sensing based AI learning paradigm for crude oil price forecasting[J]. Energy Economics, 2014, 46: 236-245. [6] Li Jianping, Tang Ling, Sun Xiaolei, et al. Country risk forecasting for major oil exporting countries: A decomposition hybrid approach[J]. Computers & Industrial Engineering, 2012, 63(3): 641-651. [7] Zhong Xiao, Enke D. Forecasting daily stock market return using dimensionality reduction[J]. Expert Systems with Applications, 2017, 67: 126-139. [8] Bates J M, Granger C W J. The Combination of forecasts[J]. Journal of the Operational Research Society, 1969, 20(4): 451-468. [9] Hao Jun, Feng Qianqian, Suo Weilan, et al. Ensemble forecasting for electricity consumption based on nonlinear optimization[J]. Procedia Computer Science. 2019, 162: 19-24. [10] 梁小珍,乔晗,汪寿阳,等.基于奇异谱分析的我国航空客运量集成预测模型[J].系统工程理论与实践, 2017, 37(6):1479-1488.Liang Xiaozhen, Qiao Han,Wang Shouyang,et al. An integrated forecasting model for air passenger traffic in china based on singular spectrum analysis[J]. Systems Engineering Theory & Practice, 2017, 37(6):1479-1488. [11] 肖进,孙海燕,刘敦虎,等.基于GMDH混合模型的能源消费量预测研究[J].中国管理科学, 2017, 25(12): 158-166.Xiao Jin, Sun Haiyan, Liu Dunhu,et al. GMDH based hybrid model for China’s energy consumption prediction[J].Chinese Journal of Management Science, 2017, 25(12): 158-166. [12] Zhao Yang, Li Jianping, Yu Lean. A deep learning ensemble approach for crude oil price forecasting[J]. Energy Economics, 2017, 66: 9-16. [13] Matheus H D, Molin R, Leandro d S. Ensemble approach based on bagging, boosting and stacking for short-term prediction in agribusiness time series[J]. Applied Soft Computing,2020, 86:105837. [14] Breiman L. Bagging predictors[J]. Machine Learning, 1996, 24(2): 123-140. [15] Christopher K, Xuan A D, Nicolas H. Deep neural networks, gradient-boosted trees, random forests: Statistical arbitrage on the S&P 500[J]. European Journal of Operational Research, 2017, 259(2): 689-702. [16] Liu Hui, Chen Chao, Lv Xinwei, et al. Deterministic wind energy forecasting: A review of intelligent predictors and auxiliary methods[J]. Energy Conversion and Management, 2019,195:328-345, [17] 李建平,王军,冯倩倩,等.基于多元驱动因素的主权CDS利差预测研究[J].计量经济学报,2021,1(2):362-376.Li Jianping, Wang Jun, Feng Qianqian, et al. forecasting sovereign CDS spreads based on multiple determinants[J]. China Journal of Econometrics, 2021,1(2):362-376. [18] Elliott G, Timmermann A. Economic forecasting[M]. Princeton University Press, 2016. [19] 陈荣,梁昌勇,陆文星,等.面向旅游突发事件的客流量混合预测方法研究[J].中国管理科学, 2017, 25(5): 167-174.Chen Rong, Liang changyong, Lu wenxing, et al. the research of tourist flow hybrid forecasting model for tourism emergency events[J]. Chinese Journal of Manegement Science, 2017, 25(5): 167-174. [20] Jose V R R, Winkler R L. Simple robust averages of forecasts: Some empirical results[J]. International Journal of Forecasting, 2008, 24(1): 163-169. [21] Armstrong J S. Principles of forecasting: A handbook for researchers and practitioners [M]. Springer Science & Business Media, 2001. [22] Grushka-Cockayne Y, Jose V R R, Lichtendahl K C. Ensembles of overfit and overconfident forecasts[J]. Management Science, 2017, 63(4): 1110-1130. [23] 赵华,肖佳文.考虑微观结构噪声与测量误差的波动率预测[J].中国管理科学, 2020, 28(4):48-60.Zhao Hua, Xiao Jiawen. Volatility forecasting in the presence of microstructure noise and measurement error[J]. Chinese Journal of Manegement Science, 2020, 28(4):48-60. [24] Crone S F, Hibon M, Nikolopoulos K. Advances in forecasting with neural networks? Empirical evidence from the NN3 competition on time series prediction[J]. International Journal of Forecasting, 2011, 27(3): 635-660. [25] Xu Ning, Ding Song, Gong Yande, et al. Forecasting Chinese greenhouse gas emissions from energy consumption using a novel grey rolling model[J]. Energy, 2019, 175:218-227.
|