主管:中国科学院
主办:中国优选法统筹法与经济数学研究会
   中国科学院科技战略咨询研究院

中国管理科学 ›› 2022, Vol. 30 ›› Issue (3): 221-229.doi: 10.16381/j.cnki.issn1003-207x.2020.2182

• 论文 • 上一篇    下一篇

基于驱动因素控制的线性时变参数DLDGM(1,N)模型

李晔, 丁圆苹   

  1. 河南农业大学信息与管理科学学院,河南 郑州450002
  • 收稿日期:2020-08-21 修回日期:2020-12-15 出版日期:2022-03-20 发布日期:2022-03-19
  • 通讯作者: 李晔(1972-),女(汉族),河南南阳人,河南农业大学信息与管理科学学院,教授,硕士,研究方向:灰色系统、物流管理,Email:zzliye@163.com. E-mail:zzliye@163.com
  • 基金资助:
    河南省软科学研究计划项目(222400410391);河南省高等学校重点科研项目(20A630015);河南省高等学校人文社会科学研究一般项目(2020-ZDJH-140)

Construction of Linear Time-varying Parameters DLDGM(1,N) Model Based on Driving Factors Control

LI Ye, DING Yuan-ping   

  1. School of Information and Management Science, Henan Agricultural University, Zhengzhou 450002, China
  • Received:2020-08-21 Revised:2020-12-15 Online:2022-03-20 Published:2022-03-19
  • Contact: 李晔 E-mail:zzliye@163.com

摘要: 针对传统GM(1,N)模型未考虑参数随时间变化的动态特征及未明确驱动因素作用机制的问题,首先引入线性时变参数以及驱动因素控制函数,构建基于驱动因素控制的线性时变参数DLDGM(1,N)模型,论证DGM(1,1)、NDGM(1,1)、TDGM(1,1)、DGM(1,N)、DCDGM(1,N)模型均是该模型在不同参数取值下的特殊形式;然后基于白化信息充分和匮乏的两种情况,给出驱动因素控制参数的识别方法;最后应用所提模型对河南省粮食产量进行预测,验证模型的有效性和实用性。

关键词: 灰色预测;线性时变参数;GM(1,N)模型;驱动因素;粮食产量预测

Abstract: Aiming at the problem that the dynamic change characteristics of parameters with time is not considered, and the mechanism of driving factors is not clarified in the traditional GM(1,N) model, a linear time-varying parameters discrete GM(1,N) model based on driving factors control is constructed by introducing linear time-varying parameters and driving factor control function, which is abbreviated as DLDGM(1,N) model. The new model has more reasonable modeling process, more stable structure, and the traditional multi-variable model’s defects are eliminated in it. To identify the mechanism of driving factor control parameters, calculation methods based on the two situations of sufficient and lack of whitening information are given. In addition, it is proved that DLDGM(1,N) model is entirely compatible with the single variable grey prediction model GM(1,1), DGM(1,1), NDGM(1,1) and TDGM(1,1), and the multi-variable grey prediction model DGM(1,N) and DCDGM(1,N) by adjusting the parameter values,. Finally, to verify the practicality and effectiveness of DLDGM(1,N) model, the model is used to simulate and predict the grain yield in Henan Province and the sample data is obtained by Henan Statistical Yearbook. The mean relative simulation and prediction percentage errors of DLDGM(1,N) model are 0.49% and 1.23%, in comparison with those of DGM(1,N) model and traditional GM(1,N) model, which are 1.00%, 3.12% and 4.68%, 5.25% respectively. The results show that DLDGM(1,N) model has the best performance in simulation and prediction, which on one hand testifies the effectiveness of improving model’s structure, and on the other hand proves that the model has good practicability in the system with time-varying parameters and complex driving factors mechanism.

Key words: grey prediction; linear time-varying parameters; GM(1,N) model; driving factors; grain yield forecasting

中图分类号: