主管:中国科学院
主办:中国优选法统筹法与经济数学研究会
   中国科学院科技战略咨询研究院

中国管理科学 ›› 2022, Vol. 30 ›› Issue (5): 41-53.doi: 10.16381/j.cnki.issn1003-207x.2019.1705

• 论文 • 上一篇    下一篇

中国股市泡沫破裂临界时点动态置信区间研究

于孝建1,2, 程宇1, 肖炜麟3   

  1. 1.华南理工大学经济与金融学院,广东 广州510006;2.华南理工大学金融工程研究中心,广东 广州510006;3.浙江大学管理学院,浙江 杭州310058
  • 收稿日期:2019-10-27 修回日期:2020-05-13 出版日期:2022-05-20 发布日期:2022-05-28
  • 通讯作者: 肖炜麟(1981-),男(汉族),湖南衡南人,浙江大学管理学院,副教授,博士,研究方向:金融计量、资产定价与金融风险管理,Email:wlxiao@zju.edu.cn. E-mail:wlxiao@zju.edu.cn
  • 基金资助:
    国家自然科学基金资助面上项目(71871202,71771091);中央高校基本科研业务费专项资金资助项目(XYMS201908)

Dynamic Confidence Interval of the Critical Time of Chinese Stock Market Bubble Crash

YU Xiao-jian1,2, CHENG Yu1, XIAO Wei-lin3   

  1. 1. School of Economics and Finance, South China University of Technology, Guangzhou 510006, China;2. Research Center of Financial Engineering, South China University of Technology, Guangzhou 510006, China;3. School of Management,Zhejiang University, Hangzhou 310058, China
  • Received:2019-10-27 Revised:2020-05-13 Online:2022-05-20 Published:2022-05-28
  • Contact: 肖炜麟 E-mail:wlxiao@zju.edu.cn

摘要: 本文在对数周期幂率(LPPL)模型基础上,分别构建了“滚动窗口”以及“固定起点并移动终点”两种泡沫临界点动态置信区间构建方法,并以中国股市沪深300指数在2007年和2015年发生的两次大牛市股市崩盘为研究对象,采用两种新的方法进行样本外预测,计算出泡沫破裂的临界时点以及动态置信区间。研究结果表明,随着时间的不断推移,泡沫破裂临界时点的置信区间基本上能稳定覆盖实际发生泡沫破裂的时点。相比单纯利用LPPL模型预测临界时点方法,置信区间法能更好地克服预测临界时点随机性的情况,并能很好显示股市泡沫临界区间的变化轨迹,为投资者风险管理提供参考。

关键词: 对数周期幂律模型;股市崩盘;金融泡沫;置信区间

Abstract: Bubble refers to the explosive growth of asset prices, and the crash is rapidly decline of stock or stock index after the bubble bursts. A series of asset prices plummet in a short period of time causing a sharp oscillation in the stock market, which in turn damage the asset interests of investorsand disrupt the orderly development of the capital market.In this paper, a new method is developed through the Log-Periodic Power Law Model (LPPL) to help investors identify bubbles and track the risks of bubbles in financial activities effectively. The LPPL model is ln[p(t)]=A+(tc-t)α{B+Ccos[ωln(tc-t)+φ]}, where ln[p(t)] is the logarithm of assets price, α is the exponent of the power law growth and tc is the critical point of bubble burst.The two big bull market crashes of the Shanghai and Shenzhen 300 Index (CSI 300) in 2007 and 2015 are studied. Based on the LPPL model, two methods including “rolling window” and “fixing the initial point and moving the end point” are introduced for resampling, then out-of-sample prediction daily is made to calculate the critical point of the bubble bursts and construct the dynamic confidence intervals for the bubble critical times respectively. Theempirical results show that the confidence interval of the critical times can basically cover the time when the bubbles crash actually occurs as time goes by. Compared with the simple method that use the LPPL model to predict the single critical time, the confidence interval method overcomes the randomness of the critical time prediction well, and also well display the change trajectory of the stock market bubble critical interval. The innovative method of this paper provides an effective tool for the risk management, which is a beneficial expansion for the researches of the crash early warning.

Key words: log-periodic power lawmodel;stock crash;financial bubbles;confidence interval

中图分类号: