[1] Sukcharoen K, Leatham D J. Dependence and extreme correlation among US industry sectors[J]. Studies in Economics and Finance, 2016, 33(1): 26-49. [2] Sharma C, Banerjee K. A study of correlations in the stock market[J]. Physica A: Statistical Mechanics and its Applications, 2015, 432: 321-330. [3] Surya A C, Natasha G. Is there any sectoral cointegration in Indonesia equity market?[J]. International Research Journal of Business Studies, 2018, 10(3): 159-172. [4] Alomari M, Power D M, Tantisantiwong N. Determinants of equity return correlations: A case study of the Amman Stock Exchange[J]. Review of Quantitative Finance and Accounting, 2018, 50(1): 33-66. [5] Yang Rui, Li Xiangyang, Zhang Tong. Analysis of linkage effects among industry sectors in China’s stock market before and after the financial crisis[J]. Physica A: Statistical Mechanics and its Applications, 2014, 411: 12-20. [6] 刘井建, 焦怀东, 南晓莉. 危机冲击背景下股票市场风险联动非线性[J]. 系统工程, 2015, 33(12): 16-22.Liu Jingjian, Jiao Huaidong, Nan Xiaoli. Nonlinearity of risk linkage in stock market with financial crisis impact[J]. Systems Engineering, 2014, 33(12): 16-22. [7] Long Wen, Tang Yeruan, Cao Dingmu. Correlation analysis of industry sectors in China’s stock markets based on interval data[J]. Filomat, 2016, 30(15): 3999-4013. [8] Qiao Haishu, Xia Yue, Li Ying. Can network linkage effects determine return? Evidence from Chinese stock market[J]. Plos One, 2016, 11(6): e0156784. [9] Long Haiming, Zhang Ji, Tang Nengyu. Does network topology influence systemic risk contribution? A perspective from the industry indices in Chinese stock market[J]. Plos One, 2017, 12(7): e0180382. [10] Ji Jian, Huang Chuanchao, Cao Ya, et al. The network structure of Chinese finance market through the method of complex network and random matrix theory[J]. Concurrency and Computation: Practice and Experience, 2019, 31(9): e4877.1- e4877.15. [11] Zhang Guofu, Du Ziping. Co-movements among the stock prices of new energy, high-technology and fossil fuel companies in China[J]. Energy, 2017, 135: 249-256. [12] Long Wen, Guan Lijing, Shen Jiangjian, et al. A complex network for studying the transmission mechanisms in stock market[J]. Physica A: Statistical Mechanics and its Applications, 2017, 484: 345-357. [13] 叶五一, 谭轲祺, 缪柏其. 基于动态因子Copula模型的行业间系统性风险分析[J]. 中国管理科学, 2018, 26(3): 1-12.Ye Wuyi, Tan Keqi, Miao Baiqi. Analysis of systemic risk among industries via dynamic factor copulas[J]. Chinese Journal of Management Science, 2018, 26(3): 1-12. [14] 郭文伟, 陈妍玲. 沪、深、港股市相依状态转换及其危机传染效应研究[J]. 管理评论, 2017, 29(12): 3-16.Guo Wenwei, Chen Yanling. An empirical research on the conversion of dependency state and crisis contagion among Shanghai, Shenzhen and Hong Kong stock markets[J]. Management Review, 2017, 29(12): 3-16. [15] Billio M, Getmansky M, Lo A W, et al. Econometric measures of connectedness and systemic risk in the finance and insurance sectors[J] Journal of Financial Economics, 2012, 104 (3): 535-559. [16] Diebold F X, Yilmaz K. On the network topology of variance decompositions: Measuring the connectedness of financial firms[J] Journal of Econometrics, 2014, 182(1): 119-134. [17] Yang Jian, Zhou Yinggang. Credit risk spillovers among financial institutions around the global credit crisis: Firm-level evidence[J] Management Science, 2013, 59(10): 2343-2359. [18] Hardle W K, Wang W, Yu L. Tenet: Tail-event driven network risk[J] Journal of Econometrics, 2016, 192(2): 499-513. [19] Lundgren A I, Milicevic A, Uddin G S, et al. Connectedness network and dependence structure mechanism in green investments[J] Energy Economics, 2018, 72: 145-153. [20] Nishimura Y, Sun B. The intraday volatility spillover index approach and an application in the Brexit Vote[J] Journal of International Financial Markets, Institutions & Money, 2018(55): 241-253. [21] 梁琪, 李政, 郝项超. 中国股票市场国际化研究:基于信息溢出的视角[J]. 经济研究, 2015(4): 150-164.Liang Qi, Li Zheng, Hao Xiangchao. The internationalization of Chinese stock market: Based on information spillover[J]. Economic Research Journal, 2015(4): 150-164. [22] 李政, 梁琪, 涂晓枫. 我国上市金融机构关联性研究——基于网络分析法[J]. 金融研究, 2016(8): 95-110.Li Zhen, Liang Qi, Tu Xiaofeng. The connectedness of Chinese listed financial institutions: A study based on network analysis[J]. Journal of Financial Research, 2016(8): 95-110. [23] 李政, 梁琪, 方意. 中国金融部门间系统性风险溢出的监测预警研究——基于下行和上行△CoES指标的实现与优化[J]. 金融研究, 2019(2): 40-58.Li Zhen, Liang Qi, Fang Ying. Monitoring and forewarning of systemic risk spillover in China’s financial sector based on modified CoES indicators[J]. Journal of Financial Research, 2019(2): 40-58. [24] 李政, 刘淇, 梁琪. 基于经济金融关联网络的中国系统性风险防范研究[J]. 统计研究, 2019, 36(2): 23-37.Li Zhen, Liu Qi, Liang Qi. A study on forestalling China’s systemic risk based on financial industry and real economy interacted network[J]. Statistical Research, 2019, 36(2): 23-37. [25] 周爱民, 韩菲. 股票市场和外汇市场间风险溢出效应研究——基于GARCH-时变Copula-CoVaR模型的分析[J].国际金融研究, 2017 (11): 54-64.Zhou Aimin, Han Fei. Research on risk spillover effect between stock market and foreign exchange market based on GARCH - time-varying Copula - CoVar model[J]. Studies of International Finance, 2017(11): 54-64. [26] 刘超, 徐君慧, 周文文. 中国金融市场的风险溢出效应研究——基于溢出指数和复杂网络方法[J]. 系统工程理论与实践, 2017,37(4): 831-842.Liu Chao, Xu Junhui, Zhou Wenwen. Study on risk spillover effect of financial markets in China based on methods of spillover index and complex network[J]. Systems Engineering-Theory & Practice, 2017,37(4): 831-842. [27] Adams Z, Fuss R, Gropp R. Spillover effects among financial institutions: A state-dependent sensitivity value-at-risk approach[J] Journal of Financial and Quantitative Analysis, 2014, 49(3): 575-598. [28] White H, Kim T, Manganelli S. VAR for VaR: Measuring tail dependence using multivariate regression quantiles[J] Journal of Econometrics, 2015, 187(1): 169-188. [29] Greenwood R, Landier A, Thesmar D. Vulnerable Banks[J] Journal of Financial Economics, 2011, 115(3): 471-485. [30] 吴永钢, 赵航, 卜林. 中国金融体系内极端风险溢出关系研究[J]. 南开经济研究, 2019(5): 98-121.Wu Yonggang, Zhao Hang, Bu Lin. A study on the extreme risk spillover relationship in China's financial system[J]. Naikai Economic Studies, 2019(5): 98-121. [31] Wang Xudong, Hui Xiaofeng. Cross-sectoral information transfer in the Chinese stock market around its crash in 2015[J]. Entropy, 2018, 20: 1-14. [32] Wang Xudong, Hui Xiaofeng. Mutual information based analysis for the distribution of financial contagion in stock markets[J]. Discrete Dynamics in Nature and Society, 2017, 3218042: 1-13. [33] Wu Xianbo, Hui Xiaofeng. Risk transmission of the regions in the Yangtze River Economic Belt[J]. Discrete Dynamics in Nature and Society, 2020, 8876883: 1-10. [34] 孙延风, 王朝勇. 一种基于文本互信息的金融复杂网络模型[J]. 物理学报, 2018, 67(14): 148901.Sun Yanfeng, Wang Chaoyong. Financial complex network model based on textual mutual information[J]. Acta Physica Sinica, 2018, 67(14): 148901. [35] 吴献博, 惠晓峰. 中国股市区域相依关系及其动态演化研究——以2015年股灾为分析背景[J]. 复杂系统与复杂性科学, 2020, 17(2): 1-10.Wu Xianbo, Hui Xiaofeng. The regional dependence of China’s stock market and its dynamic evolution based on the background of the stock market crash in 2015[J]. Complex Systems and Complexity Science, 2020, 17(2): 1-10. [36] Fiedor P. Mutual information-based hierarchies on Warsaw Stock Exchange[J]. Acta Physica Polonica A, 2015, 127: A33-A37. [37] Yang Chunxia, Shen Ying, Xia Bingying. Evolution of Shanghai Stock Market based on maximal spanning trees[J]. Modern Physics Letters B, 2013, 27(3): 1350022. [38] Yang Chunxia, Chen Yanhua, Hao Weiwei, et al. Effects of financial crisis on the industry sector of Chinese stock market—from a perspective of complex network[J]. Modern Physics Letters B, 2014, 28(13): 1450102. [39] Pawel Fiedor. Networks in financial markets based on the mutual information rate[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 2014, 89(5): 052801. [40] Kwon O, Yang J S. Information flow between composite stock index and individual stocks[J]. Physica A: Statistical Mechanics and its Applications, 2008, 387(12): 2851-2856. [41] Aslam F, Aziz S, Nguyen D K, et al. On the efficiency of foreign exchange markets in times of the COVID-19 pandemic[J]. Technological Forecasting & Social Change, 2020. 161. [42] Diebold F X, Yilmaz K. Measuring financial asset return and volatility spillovers, with application to global equity markets[J]. The Economic Journal, 2009, 119(534): 158-171. [43] Diebold F X, Yilmaz K. Better to give than to receive: Predictive directional measurement of volatility spillovers[J]. International Journal of Forecasting, 2012, 28(1): 57-66. [44] 傅强, 张颖. 我国金融系统的风险溢出效应研究——基于溢出指数的实证分析[J]. 宏观经济研究, 2015(7): 45-51.Fu Qiang, Zhang Ying. Research on risk spillover effect of financial system in China-An empirical analysis based on spillover index[J]. Macroeconomics, 2015(7): 45-51. [45] 李政. “811汇改”提高了人民币汇率中间价的市场基准地位吗?[J]. 金融研究, 2017(4): 1-16.Li Zheng. Does 811 exchange rate reform enhance the market-orientation and benchmark status of the central parity rate?[J]. Journal of Financial Research, 2017(4): 1-16.
|