[1] Imai K, Gaiha R, Thapa G, et al. Microfinance and poverty-a macro perspective[J]. World Development, 2012, 40(8): 1675-1689. [2] 程砚秋, 徐占东. 基于泰尔指数修正的ELECTRE Ⅲ小企业信用评价模型[J]. 中国管理科学, 2019, 27(10): 22-33.Cheng Yanqiu, Xu Zhandong. Credit risk evaluation of small enterprises based on revised ELECTRE III by Theil index[J]. Chinese Journal of Management Science, 2019, 27(10): 22-33. [3] Lin T, Goyal P, Girshick R, et al. Focal loss for dense object detection[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2017, 99: 2999-3007. [4] 李哲, 迟国泰. 基于最大指标区分度与最优相对隶属度的上市公司信用风险研究[J].中国管理科学, 2021, 29(4): 1-15.Li Zhe, Chi Guotai. Research on the listed companies’ credit risk based on maximum discrimination and optimal relative membership degree[J]. Chinese Journal of Management Science, 2021, 29(4): 1-15. [5] 迟国泰, 李鸿禧. 基于逐步判别分析的小企业债信评级模型及实证[J]. 管理工程学报, 2019, 33(4): 205-215.Chi Guotai, Li Hongxi. Debt rating model of small businesses and empirical analysis based on stepwise discriminant[J]. Journal of Industrial Engineering and Engineering Management, 2019, 33(4): 205-215. [6] Guo Yanhong, Zhou Wenjun, Luo Chunyu, et al. Instance-based credit risk assessment for investment decisions in P2P lending[J]. European Journal of Operational Research, 2016, 249(2): 417-426. [7] Chen Ning, Ribeiro B, Chen An. Financial credit risk assessment: A recent review[J]. Artificial Intelligence Review, 2016, 45: 1-23. [8] 牟刚, 袁先智. 大数据架构下企业内部信用评级的实证研究[J]. 系统工程学报, 2016, 31(6): 808-815, 849.Mu Gang, Yuan Xianzhi. Empirical study for enterprise internal credit rating under big data framework[J]. Journal of Systems Engineering, 2016, 31(6): 808-815, 849. [9] 吕德宏, 朱莹. 农户小额信贷风险影响因素层次差异性研究[J]. 管理评论, 2017, 29(1): 33-41.Lv Dehong, Zhu Ying. Research on the factors and hierarchy difference of farmer household microfinance risk[J]. Management Review, 2017, 29(1): 33-41. [10] Angilella S, Mazzù S. The financing of innovative SMEs: A multicriteria credit rating model[J]. European Journal of Operational Research, 2015, 244(2): 540-554. [11] 衣柏衡, 朱建军, 李杰. 基于改进SMOTE的小额贷款公司客户信用风险非均衡SVM分类[J]. 中国管理科学, 2016, 24(3): 24-30.Yi Baiheng, Zhu Jianjun, Li Jie. Imbalanced data classification on micro-credit company customer credit risk assessment using improved SMOTE support vector machine[J]. Chinese Journal of Management Science, 2016, 24(3): 24-30. [12] 董路安, 叶鑫. 基于改进教学式方法的可解释信用风险评价模型构建[J].中国管理科学, 2020, 28(9):45-53.Dong Luan, Ye Xin. Interpretable credit risk assessment modeling based on improved pedagogical method[J]. Chinese Journal of Management Science, 2020, 28(9):45-53. [13] 石宝峰,刘锋,王建军,等. 基于 PROMETHEE-II 的商户小额贷款信用评级模型及实证[J]. 运筹与管理, 2017, 26(9): 137 -147.Shi Baofeng, Liu Feng, Wang Jianjun, et al. A credit rating model of microfinance loans for small private business based on PROMETHEE-II and its empirical study[J]. Operations Research and Management Science, 2017, 26(9): 137-147. [14] Xia Yufei, Liu Chuanzhe, Li Yuying, et al. A boosted decision tree approach using bayesian hyper-parameter optimization for credit scoring[J]. Expert Systems with Applications, 2017, 78: 225-241. [15] Hinton G E, Salakhutdinov R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786): 504-507. [16] 肖斌卿, 杨旸, 李心丹, 等. 基于模糊神经网络的小微企业信用评级研究[J]. 管理科学学报, 2016, 19(11): 114-126.Xiao Binqing, Yang yang, Li Xindan, et al. Research on the credit rating of small and micro enterprises based on fuzzy neural network[J]. Journal of Management Sciences in China, 2016, 19(11): 114-126. [17] 何珊, 刘振东, 马小林. 信用评分模型比较综述—基于传统方法与数据挖掘的对比[J]. 征信, 2019, 37(2): 57-61.He Shan, Liu Zhendong, Ma Xiaolin. A comparative review of credit scoring models —based on the comparison between traditional methods and data mining[J]. Credit Reference, 2019, 37(2): 57-61. [18] Rumelhart D E, Hinton G E, Williams R J. Learning representations by back-propagating errors[J]. Nature, 1986, 323(6088): 533-536. [19] 杨胜刚, 朱琦, 成程. 个人信用评估组合模型的构建—基于决策树-神经网络的研究[J]. 金融论坛, 2013, 18(2): 57-61, 67.Yang Shenggang, Zhu Qi, Cheng Cheng. The building of the combined model for personal credit rating - a study based on the decision tree-neural network[J]. Finance Forum, 2013, 18(2): 57-61, 67. [20] Standard & Poor’s Ratings Services. S&P’s study of China’s top corporates highlights their significant financial risks [R]. Standard & Poor’s Ratings Services, September 13, 2012: 175-199. [21] Fitch Ratings. Fitch ratings global corporate finance 2012 transition and default study [R]. Credit Market Research-Fitch Ratings, March 2013: 2-27. [22] Moody’s Investors Service. Rating symbols and definitions [R]. Moody’s Investors Services, 2016: 1-48. [23] 中国农业银行. 中国农业银行信贷资产风险分类管理办法[R]. 中国农业银行, 2011.Agricultural bank of China. Agricultural bank of China credit asset risk classification management measures [R]. Agricultural bank of China, 2011. [24] 中和农信项目管理有限公司. 中和农信农户信用评价打分表[R]. 中和农信项目管理有限公司, 2017.Chongho bridge management limited. Chongho bridge farmers’ credit evaluation scoring table [R]. Chongho bridge management limited, 2017. [25] 石宝峰, 王静, 迟国泰. 普惠金融、银行信贷与商户小额贷款融资—基于风险等级匹配视角[J]. 中国管理科学, 2017, 25(9): 28-36.Shi Baofeng, Wang Jing, Chi Guotai. The inclusive finance, bank loans and financing of small private business microfinance loan[J]. Chinese Journal of Management Science, 2017, 25(9): 28-36. [26] 石宝峰, 王静. 基于ELECTRE III的农户小额贷款信用评级模型[J]. 系统管理学报, 2018, 27(5): 854-862.Shi Baofeng, Wang Jing. A credit rating model of microfinance for farmers based on ELECTRE III[J]. Journal of Systems & Management, 2018, 27(5): 854-862. [27] 林宇, 黄迅, 淳伟德, 等. 基于ODR -ADASYN-SVM的极端金融风险预警研究[J]. 管理科学学报, 2016, 19(5): 87-101.Lin Yu, Huang Xun, Chun Weide, et al. Early warning for extremely financial risks based on ODR-ADASYN-SVM[J] Journal of Management Sciences in China, 2016, 19(5): 87-101. [28] Chawla N V, Bowyer K W, Hall L O, et al. SMOTE: Synthetic minority over-sampling technique[J]. Journal of Artificial Intelligence Research, 2002, 16(1): 321-357. [29] 杨莲, 石宝峰, 迟国泰, 等. 非均衡数据下基于BPNN-LDAMCE的信用评级模型设计及应用[J]. 数量经济技术经济研究, 2022, 39(3):152-169.Yang Lian, Shi Baofeng, Chi Guotai, et al. Design and application of a credit rating model based on BPNN-LDAMCE with imbalanced data[J]. The Journal of Quantitative & Technical Economics, 2022, 39(3): 152-169. [30] Barry M J A, Linoff G S. Data mining techniques: For marketing, sales, and customer support[M]. New York: John Wiley & Sons, 1997. [31] Glorot X, Bordes A, Bengio Y. Deep sparse rectifier neural networks[J]. Journal of Machine Learning Research, 2011, 15: 315-323. [32] 杨莲, 石宝峰, 董轶哲. 基于Class Balanced Loss修正交叉熵的非均衡样本信用风险评价模型[J].系统管理学报,2022,31(2):255-269,289.Yang Lian, Shi Baofeng, Dong Yizhe. A credit risk evaluation model for imbalanced data classification based on class balanced loss modified cross entropy function[J] Journal of Systems & Management, 2022, 31(2):255-269,289. [33] Chi Guotai, Abedin M Z, Moula F. Modeling credit approval data with neural networks: An experimental investigation and optimization[J]. Journal of Business Economics and Management, 2017, 18(2): 224-240. [34] He Hongliang, Zhang Wenyu, Zhang Shuai. A novel ensemble method for credit scoring: Adaption of different imbalance ratios[J]. Expert Systems with Application, 2018, 98: 105-117. [35] Wang Di, Zhang Zuoquan, Bai Rongquan, et al. A hybrid system with filter approach and multiple population genetic algorithm for feature selection in credit scoring[J]. Journal of Computational and Applied Mathematics, 2017, 329: 307-321.
|