中国管理科学 ›› 2022, Vol. 30 ›› Issue (10): 72-84.doi: 10.16381/j.cnki.issn1003-207x.2020.0402
谢文浩, 曹广喜
收稿日期:
2020-03-12
修回日期:
2020-06-18
出版日期:
2022-10-20
发布日期:
2022-10-12
通讯作者:
曹广喜(1976-),男(汉族),江苏淮安人,南京信息工程大学管理工程学院,教授,博士生导师,研究方向:金融工程,Email:caoguangxi@nuist.edu.cn.
E-mail:caoguangxi@nuist.edu.cn
基金资助:
XIE Wen-hao, CAO Guang-xi
Received:
2020-03-12
Revised:
2020-06-18
Online:
2022-10-20
Published:
2022-10-12
Contact:
曹广喜
E-mail:caoguangxi@nuist.edu.cn
摘要: 加密货币这一新兴的金融市场目前引起了学者的广泛关注。本文主要基于多重分形降趋移动平均交叉相关分析法(MFXDMA),以4类加密货币(比特币、以太坊、瑞波币和莱特币)、上证指数和恒生指数为研究对象,实证分析了加密货币单一市场、交叉市场间收益率的多重分形特征,以及加密货币和上证指数、恒生指数交叉相关性的多重分形特征。实证结果表明,比特币、以太坊、瑞波币和莱特币各单独市场的收益率具有长记忆性、非对称的多重分形特征。4个加密货币市场中以太坊的市场效率最强,而比特币的市场效率最弱。加密货币市场对内地股市和香港股市产生了一定影响,市场间的交叉相关持续性增强。通过对比特币、比特币和以太坊交叉市场采用中心和前向移动平均法进行对比分析,实验表明本文使用后向移动平均法的结果是稳健的。最后通过滑动窗技术,研究了单一市场和跨市场相关性、波动函数的时变特征,结果表明比特币和以太坊,上证指数和恒生指数时变特征具有一定的相似性,并且上证指数比恒生指数更易受加密货币市场的影响。
中图分类号:
谢文浩, 曹广喜. 基于MFXDMA方法的加密货币和中国股市间的多重分形交叉相关性研究[J]. 中国管理科学, 2022, 30(10): 72-84.
XIE Wen-hao, CAO Guang-xi. Multifractal Cross-Correlation between Cryptocurrency and Chinese Stock Market Based on MFXDMA Method[J]. Chinese Journal of Management Science, 2022, 30(10): 72-84.
[1] 谢平,石午光.数字加密货币研究:一个文献综述[J].金融研究,2015,429(1):1-15.Xie Ping,Shi Wuguang. A literature review of cryptocurrency[J]. Journal of Financial Research, 2015,429(1): 1-15. [2] Katsiampa P, Corbet S, Lucey B. Volatility spillover effects in leading cryptocurrencies: A BEKK-MGARCH analysis[J]. Finance Research Letters, 2019, 29: 68-74. [3] Koutmos D. Return and volatility spillovers among cryptocurrencies[J]. Economics Letters, 2018, 173: 122-127. [4] Corbet S, Meegan A, Larkin C, et al. Exploring the dynamic relationships between cryptocurrencies and other financial assets[J]. Economics Letters, 2018, 165: 28-34. [5] Gil-Alana L A, Abakah E J A, Rojo M F R. Cryptocurrencies and stock market indices. Are they related?[J]. Research in International Business and Finance, 2020, 51: 101063. [6] Kristjanpoller W, Bouri E, Takaishi T. Cryptocurrencies and equity funds: Evidence from an asymmetric multifractal analysis[J]. Physica A: Statistical Mechanics and its Applications, 2020,545: 123711. [7] Ferreira P, Kristoufek L, Pereira E J A L. DCCA and DMCA correlations of cryptocurrency markets[J]. Physica A: Statistical Mechanics and its Applications, 2020,545: 123803. [8] Urquhart A. Price clustering in Bitcoin[J]. Economics letters, 2017, 159: 145-148. [9] Bouri E, Gil-Alana L A, Gupta R, et al. Modelling long memory volatility in the Bitcoin market: Evidence of persistence and structural breaks[J]. International Journal of Finance & Economics, 2019, 24(1): 412-426. [10] Lahmiri S, Bekiros S. Chaos, randomness and multi-fractality in Bitcoin market[J]. Chaos, solitons & fractals, 2018, 106: 28-34. [11] Urquhart A. The inefficiency of Bitcoin[J]. Economics Letters, 2016, 148: 80-82. [12] Jiang Yonghong, Nie He, RuanWeihua. Time-varying long-term memory in Bitcoin market[J]. Finance Research Letters, 2018, 25: 280-284. [13] Caporale G M, Zekokh T. Modelling volatility of cryptocurrencies using Markov-Switching GARCH models[J]. Research in International Business and Finance, 2019, 48: 143-155. [14] Cheah E T, Fry J. Speculative bubbles in Bitcoin markets? An empirical investigation into the fundamental value of Bitcoin[J]. Economics Letters, 2015, 130: 32-36. [15] Jakub B. Does Bitcoin follow the hypothesis of efficient market?[J]. International Journal of Economic Sciences, 2015, 4(2): 10-23. [16] Kurihara Y, Fukushima A. The market efficiency of Bitcoin: A weekly anomaly perspective[J]. Journal of Applied Finance and Banking, 2017, 7(3): 57-64. [17] Gajardo G, Kristjanpoller W D, Minutolo M. Does Bitcoin exhibit the same asymmetric multifractal cross-correlations with crude oil, gold and DJIA as the Euro, Great British Pound and Yen?[J]. Chaos, Solitons & Fractals, 2018, 109: 195-205. [18] Al-Yahyaee K H, Mensi W, Yoon S M. Efficiency, multifractality, and the long-memory property of the Bitcoin market: A comparative analysis with stock, currency, and gold markets[J]. Finance Research Letters, 2018, 27: 228-234. [19] Jiang Zhiqiang, Zhou Weixing. Multifractal detrending moving-average cross-correlation analysis[J]. Physical Review E, 2011, 84(1): 016106. [20] 周伟杰,党耀国,顾荣宝.基于灰色算子的分形法及应用[J].中国管理科学,2017,25(10):89-99.Zhou Weijie, Dang Yaoguo, Gu Rongbao. The modified fractal methods based on the grey operator and their application[J]. Chinese Journal of Management Science, 2017, 25(10): 89-99. [21] Wang Jing, Shang Pengjian, Ge Weijie. Multifractalcross-correlation analysis based on statistical moments[J]. Fractals, 2012, 20: 271-279. [22] 祁明,肖林.虚拟货币:运行机制、交易体系与治理策略[J].中国工业经济,2014(4):110-122.Qi Ming, Xiao Lin. Network virtual currency: Operation mechanism, trading system and governance strategy[J]. China Industrial Economics, 2014(4):110-122. [23] 姚前.共识规则下的货币演化逻辑与法定数字货币的人工智能发行[J].金融研究,2018,432(9):37-55.Yao Qian. Currency evolution logic under consensus mechanism and digital fiat currency issuance based on artificial intelligence[J]. Journal of Financial Research, 2018,432(9): 37-55. [24] 刘刚,刘娟,唐婉容.比特币价格波动与虚拟货币风险防范——基于中美政策信息的事件研究法[J].广东财经大学学报,2015,30(3):30-40.Liu Gang, Liu Juan, Tang Wanrong. Bitcoin price volatility and virtual currency risk control: An event study analysis based on the sino-us policy information[J]. Journal of Guangdong University of Finance and Economics, 2015, 30(3): 30-40. [25] 潘慧峰,蔡显军,孙伟,等.数字货币市场是否达到了弱式有效?——基于广义谱方法的检验[J].科学决策,2019(5):1-13.Pan Huifeng, Cai Xianjun, Sun Wei, et al. Have cryptocurrency markets reached weak-form efficiency? A generalized spectral approach[J]. Scientific Decision Making, 2019(5): 1-13. [26] 邓伟.比特币价格泡沫:证据、原因与启示[J].上海财经大学学报,2017,19(2):50-62.Deng Wei. Price bubbles in Bitcoin: Evidence,causes and implications[J]. Journal of Shanghai University of Finance and Economics, 2017, 19(2): 50-62. [27] 刘力臻,王庆龙.基于模仿传染模型的比特币羊群效应分析[J].北京邮电大学学报(社会科学版),2015,17(2):27-33.Liu Lizhen,Wang Qinglong. Analysis of Bitcoin herd behavior based on imitation and infection model[J].Journal of Beijing University of Posts and Telecommunications(Social Sciences Edition), 2015, 17(2): 27-33. [28] Zunino L, Tabak B M, Figliola A, et al. A multifractal approach for stock market inefficiency[J]. Physica A: Statistical Mechanics and its Applications, 2008, 387(26): 6558-6566. [29] Wang Yudong, Liu Li, Gu Rongbao. Analysis of efficiency for Shenzhen stock market based on multifractal detrended fluctuation analysis[J]. International Review of Financial Analysis, 2009, 18(5): 271-276. |
[1] | 郭冉冉,叶五一,刘小泉,缪柏其. 商品期货投资组合与市场收益的尾部相依研究[J]. 中国管理科学, 2024, 32(10): 11-19. |
[2] | 韩鑫韬,张晓敏,刘星. 宏观审慎管理配合下的最优货币政策选择[J]. 中国管理科学, 2024, 32(10): 1-10. |
[3] | 成思聪,王天一. 引入隔夜信息的期权定价模型研究[J]. 中国管理科学, 2024, 32(9): 1-10. |
[4] | 吴鑫育,谢海滨,马超群. 经济政策不确定性与人民币汇率波动率[J]. 中国管理科学, 2024, 32(8): 1-14. |
[5] | 谢楠,何海涛,周艳菊,王宗润. 乡村振兴背景下基于中央政府项目补贴分析的供应链金融决策研究[J]. 中国管理科学, 2024, 32(8): 214-229. |
[6] | 于孝建,刘国鹏,刘建林,肖炜麟. 基于LSTM网络和文本情感分析的股票指数预测[J]. 中国管理科学, 2024, 32(8): 25-35. |
[7] | 倪宣明,郑田田,赵慧敏,武康平. 基于最优异质收益率因子的资产定价研究[J]. 中国管理科学, 2024, 32(8): 50-60. |
[8] | 于文华,任向阳,杨坤,魏宇. 传染病不确定性对大宗商品期货价格波动的非对称影响研究[J]. 中国管理科学, 2024, 32(5): 254-264. |
[9] | 蔡毅,唐振鹏,吴俊传,杜晓旭,陈凯杰. 基于灰狼优化的混频支持向量机在股指预测与投资决策中的应用研究[J]. 中国管理科学, 2024, 32(5): 73-80. |
[10] | 李仲飞,周骐. 一个基于BL模型和复杂网络的行业配置模型[J]. 中国管理科学, 2024, 32(4): 1-13. |
[11] | 张雪彤,张卫国,王超. 发达市场与新兴市场的尾部风险[J]. 中国管理科学, 2024, 32(4): 14-25. |
[12] | 尹海员,寇文娟. 基于朴素贝叶斯法的投资者情绪度量及其对股票特质风险的影响[J]. 中国管理科学, 2024, 32(4): 38-47. |
[13] | 王晓燕,杨胜刚,张科坤. 终极所有权结构与企业委托贷款行为[J]. 中国管理科学, 2024, 32(4): 48-57. |
[14] | 李爱忠,任若恩,董纪昌. 图网络风险感知与稀疏低秩的组合管理策略[J]. 中国管理科学, 2024, 32(4): 58-65. |
[15] | 吴鑫育,姜晓晴,李心丹,马超群. 基于已实现EGARCH-FHS模型的上证50ETF期权定价研究[J]. 中国管理科学, 2024, 32(3): 105-115. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|