中国管理科学 ›› 2022, Vol. 30 ›› Issue (10): 210-223.doi: 10.16381/j.cnki.issn1003-207x.2020.0635
赵雪峰1, 吴伟伟2, 吴德林1, 时辉凝3, 廉莹4, 赵德从5
收稿日期:
2020-04-09
修回日期:
2020-09-10
出版日期:
2022-10-20
发布日期:
2022-10-12
通讯作者:
吴伟伟(1978-),男(汉族),河北卢龙人,哈尔滨工业大学经济与管理学院,教授,博士生导师,研究方向:技术管理与创新管理,Email:wuweiwei@hit.edu.cn.
E-mail:wuweiwei@hit.edu.cn
基金资助:
ZHAO Xue-feng1, WU Wei-wei2, WU De-lin1, SHI Hui-ning3, LIAN Ying4, ZHAO De-cong5
Received:
2020-04-09
Revised:
2020-09-10
Online:
2022-10-20
Published:
2022-10-12
Contact:
吴伟伟
E-mail:wuweiwei@hit.edu.cn
摘要: 当前新型交通服务定价一般基于单个特征为前提进行定价探讨,缺乏对不同特征及总体定价的宏观研究。本文集成优化多个CART树得到TPCBoost模型,同时利用纽约市网约车搭乘数据为基础,训练、测试TPCBoost模型,并利用模型分析不同特征的关系及对定价的影响,不仅验证了模型具有更强的鲁棒性及稳定性,同时发现:(1)特征非线性影响定价,短距离、短时间、少乘客时定价稳定,长距离、长时间、多乘客时定价波动剧烈;(2)当特定搭乘距离与特定搭乘时间进行组合时,会出现定价敏感期,在定价敏感期时市场竞争白热化,此时特定搭乘时间抑制定价上涨;(3)搭乘人数不直接影响定价,但与其他特征进行组合时会间接影响定价;(4)搭乘距离正影响定价,但在定价敏感期时不直接影响定价;(5)每日搭乘时间周期性影响定价,特别地,每日会出现若干定价转折时间点,其中波峰定价时间点一般多于波谷定价时间点。本文提出的TPCBoost模型经实际数据验证符合定价规律,可以为营运公司、监管部门及乘客的交通决策提供有益参考。
中图分类号:
赵雪峰, 吴伟伟, 吴德林, 时辉凝, 廉莹, 赵德从. 基于TPCBoost模型的新型交通服务定价研究—以纽约网约车为实例[J]. 中国管理科学, 2022, 30(10): 210-223.
ZHAO Xue-feng, WU Wei-wei, WU De-lin, SHI Hui-ning, LIAN Ying, ZHAO De-cong. Research on the Pricing of New Transportation Services Based on TPCBoost Model——Take New York City for Example[J]. Chinese Journal of Management Science, 2022, 30(10): 210-223.
[1] Tian Jinfeng, Zheng Xiaoying, Hu Honglin, et al. A survey of next generation mobile communications research in China[J]. Chinese Science Bulletin,2011,56(27): 2875-2888. [2] Jane Q.Research and development of artificial intelligence in China[J].National Science Review,2016,3(4):538-541. [3] 赵光辉,李玲玲.大数据时代新型交通服务商业模式的监管——以网约车为例[J].管理世界,2019,35(6):109-118.Zhao Guanghui, Li Linlin.Supervision of new transportation service business model in the era of big data: taking online car Hailingasan example[J]. Management World,2019,35(6):109-118. [4] Salvador I M, José A.Optimizing urban traffic control using a rational agent[J].Journal of Zhejiang University-Science C(Computers & Electronics),2014,15(12):1123-1137. [5] Gavin R M,Mohammad J K,Koichiro O,e tal.Differences in transportation and leisure physical activity by neighborhood design controlling for residential choice[J].Journal of Sport and Health Science,2019,8(6):532-539. [6] Austin W. Electric roads may lead to new transport scenarios[J]. Assembly,2018,61(5):521-107. [7] Jiang Xiaoming,Li Kangfei, Jiang Baobin, et al. A Bandwidth-link resources cooperative allocation strategy of data communication in intelligent transportation systems[J].China Communications, 2019,16(4):234-249. [8] Cooper D E. Intelligent transportation systems for smart cities:a progress review[J].Science China(Information Sciences),2012,55(12):2908-2914. [9] Clark B, Lyons G, Chatterjee K. Understanding the process that gives rise to household car ownership level changes[J]. Journal of Transport Geography, 2016, 55: 110-120. [10] Prins R G, Panter J, Heinen E, et al. Causal pathways linking environmental change with health behaviour change: Natural experimental study of new transport infrastructure and cycling to work[J]. Preventive medicine, 2016,87(3):175-182. [11] Corinne M, Chi H T. When and how much does new transport infrastructure add to property values? Evidence from the bus rapid transit system in Sydney, Australia[J]. Transport Policy,2016, 51(10):15-23. [12] Heinen E, Panter J, Mackett R, et al. Does exposure to new transport infrastructure result in modal shifts? Patterns of change in commute mode choices in a four-year quasi-experimental cohort study[J]. Journal of transport & health,2017,23(7):396-410. [13] 杨浩雄,张浩,王晶,等.交通拥堵收费政策效应研究[J].管理世界,2013,29(7):174-175.Yang Haoxiong, Zhang Hao, Wang Jing, et al.Study on the effect of traffic congestion charge policy[J]. Management World,2013,29(7):174-175. [14] 程铁信,李奇,赵颖.考虑碳排放的城市交通拥堵定价模型及其仿真分析[J].中国管理科学,2016,24(S1):932-937.Chen Tiexin, Li Qi, Zhao Ying. A congestion charging model for the urban central area under the consideration of carbon emission and its simulation analysis[J]. Chinese Journal of Management Science,2016,24(S1):932-937. [15] 刘南,陈达强,陈鸣飞.城市道路系统多时段、多出行方式拥挤定价模型[J].管理工程学报,2007(2):89-94.Liu Nan, Chen Daqiang, Chen Mingfei. Congestion pricing models with multiple time periods and travel modes for urban road systems[J].Journal of Industrial Engineering and Engineering Management,2007(2):89-94. [16] 吴中明,徐薇,李敏.异质用户下交通拥挤控制的混合策略研究[J].系统工程理论与实践,2019,39(11):2804-2814.Wu Zhongming, Li Wei, Li Ming. Research on mixed strategy for traffic congestion control under user heterogeneity[J]. System Engineering Theory and Practice,2019,39(11):2804-2814. [17] 李祯琪,欧国立.激励性和惩罚性交通拥堵治理政策的比较——基于动态演化博弈模型及仿真分析[J].中国管理科学,2019,27(6):167-178.Li Zhenqi, Ou Guoli. Comparison of incentive and punitive traffic congestion policies: based on the dynamic evolutionary game model and simulation analysis[J]. Chinese Journal of Management Science,2019,27(6):167-178. [18] 姬杨蓓蓓,魏妙旗,张小宁.收费站通道开放数量优化的动态瓶颈模型分析[J].管理工程学报,2019,33(3):109-115.Ji Yangbeibei, Wei Miaoqi, Zhang Xiaoning. Dynamic model on optimal open toll gates number of the highway[J].Journal of Industrial Engineering and Engineering Management,2019,33(3):109-115. [19] 邵晓双,谭德庆.社会地位效用及城市交通状况对私家车厂商市场策略的影响[J].中国管理科学,2016,24(8):37-44.Shao Xiaoshuang, Tan Deqing. Impact of the status utility and the cities’ traffic conditions to the marketing strategy of the firms of private cars[J].Chinese Journal of Management Science,2016,24(8):37-44. [20] 黄中祥,江向军,伍建辉.价格-数量调节网络交通流演化模型[J].管理科学学报,2017,20(8):102-111.Huang Zhongxiang, Jiang Xiangjun, Wu Jianhui. An evolution model for network traffic flow based on price-quantity regulation[J]. Journal of Management Science in China,2017,20(8):102-111. [21] Barna B, Zombor B, Péter I, et al. Does Uber affect bicycle-sharing usage? Evidence from a natural experiment in Budapest[J]. Transportation Research Part A,2020,17(3):138-120. [22] 周乐欣,徐海平,李烨.网约车平台双边报价交易机制创新及策略研究[J/OL].中国管理科学,2020,28(3):201-212.Zhou Lexin, Xu Haiping, Li Ye. A bilateral bidding mechanism for cloud-based on-Demand transport services[J/OL].Chinese Journal of Management Science,2020,28(3):201-212. [23] 史乐峰,吕通,陈真.共享汽车租赁定价策略研究——基于租还车便捷度和单车驾乘体验度的分析[J].价格理论与实践,2018(4):155-158.Shi Lefeng, Lv Tong, Chen Zhen. Sharing car pricing strategies analysis[J]. Price: Theory & Practice,2018(4):155-158. [24] 经有国,郭培强,秦开大.需求率受推广努力水平影响的新能源汽车租赁系统协调契约[J].中国管理科学,2018,26(3):94-100.Jing Youguo, Guo Peiqiang, Qin Kaida. Coordination contract for green car rental system with promotion effort dependent demand rate[J].Chinese Journal of Management Science,2018,26(3):94-100. [25] 李雪岩,李雪梅,李学伟.基于元胞自动机的城市轨道交通定价双层规划[J].管理工程学报,2017,31(1):155-161.Li Xueyan, Li Xuemei, Li Xuewei. Bi-level programming for urban rail transit ticket pricing based on cellular automata[J].Journal of Industrial Engineering and Engineering Management,2017,31(1):155-161. [26] Sina S, Ahmad S, Anae S. Impacts of trip characteristics and weather condition on ride-sourcing network: Evidence from Uber and Lyft[J]. Research in Transportation Economics,2020,12(3):100-820. [27] 杨浩雄,张丁,孙丽君.网约车对交通拥堵的影响研究——基于复杂系统视角[J/OL].系统工程,2020,38(3):92-99.Yang Haoxiong, Zhang Ding, Sun Lijun. The influence of Ride-hailing on traffic congestion[J/OL]. Systems Engineering,2020,38(3):92-99. [28] Jelmer M, Philippe J. Increasing control of operations and improving financial performance at regional airports: A case study of Viggo Eindhoven Airport[J]. Henry Stewart Publications,2020,14(2):141-152. [29] Gao Yi. Estimating the sensitivity of small airport catchments to competition from larger airports: A case study in Indiana[J]. Pergamon,2020,13(3): 102-628. [30] Sun D J, Zhang K, Shen S. Analyzing spatiotemporal traffic line source emissions based on massive didi online car-hailing service data[J]. Transportation Research Part D: Transport and Environment, 2018, 62: 699-714. |
[1] | 肖泉,万杉杉,张星,蔡淑琴. IT可供性视角下移动直播电商平台用户质量感知与满意度研究[J]. 中国管理科学, 2024, 32(10): 181-193. |
[2] | 刘洋,邓前前,樊治平,张琦. 网约车平台开放策略及其效率研究[J]. 中国管理科学, 2024, 32(9): 82-92. |
[3] | 郑月龙,白春光,李登峰. 考虑市场化开发的产业共性技术供给决策研究[J]. 中国管理科学, 2024, 32(8): 127-138. |
[4] | 董永杰,刘晨光,赵梦园. 环境税政策下企业副产品协同决策研究[J]. 中国管理科学, 2024, 32(7): 76-83. |
[5] | 丁黎黎,张凯旋,王垒. 公众情绪如何影响工业共生链企业减排?[J]. 中国管理科学, 2024, 32(6): 312-322. |
[6] | 陈星光,李心宇,程鲁强. 考虑订单偏好的外卖众包配送优化策略研究[J]. 中国管理科学, 2024, 32(6): 86-97. |
[7] | 赵新刚,周颖. 重大突发公共卫生事件中社会群体行为演化的计算实验:以新冠疫情为例[J]. 中国管理科学, 2024, 32(5): 207-217. |
[8] | 王雪莲,李嫄,高凯凯,郭子秀. 订阅型在线知识付费产品用户体验价值的层级路径研究[J]. 中国管理科学, 2024, 32(5): 315-324. |
[9] | 杜晓丽,李登峰. 基于大老板博弈的国际贸易物流区块链网络共识研究[J]. 中国管理科学, 2024, 32(4): 120-129. |
[10] | 陈凤娇,刘德海. 重大传染病多渠道疫情信息发布模式的演化路径分析[J]. 中国管理科学, 2024, 32(4): 237-249. |
[11] | 景熠,曹柳,张闻秋. 考虑多元行为策略的地方政府大气治理四维演化博弈分析[J]. 中国管理科学, 2024, 32(4): 306-314. |
[12] | 王伟明,徐海燕,朱建军,黄鑫. 基于TTDWAA算子和TPBM算子的混合型多属性大群体决策方法[J]. 中国管理科学, 2024, 32(4): 97-107. |
[13] | 李祥文,宋程,丁帅. 人机协同决策中的人因能力评估研究[J]. 中国管理科学, 2024, 32(3): 145-155. |
[14] | 刘茹,彭健,程永生,邓正华,乔星. 基于退款保证的线上零售商体验渠道策略研究[J]. 中国管理科学, 2024, 32(2): 178-187. |
[15] | 杨曼,刘德海. 物理-社会耦合系统下震后多方协同救援的微分博弈模型[J]. 中国管理科学, 2024, 32(1): 115-124. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|