中国管理科学 ›› 2022, Vol. 30 ›› Issue (11): 229-238.doi: 10.16381/j.cnki.issn1003-207x.2020.1697
王美强, 黄阳
收稿日期:
2020-09-03
修回日期:
2020-11-15
出版日期:
2022-11-20
发布日期:
2022-11-28
通讯作者:
王美强(1972-),男(汉族),贵州贵阳人,贵州大学管理学院,教授,博士,2019年贵州省哲学社会科学十大创新团队“军民融合与制造业转型升级”团队核心成员,研究方向:DEA方法及其应用研究,Email:wangmq@mail.ustc.edu.cn.
E-mail:wangmq@mail.ustc.edu.cn
基金资助:
WANG Mei-qiang, HUANG Yang
Received:
2020-09-03
Revised:
2020-11-15
Online:
2022-11-20
Published:
2022-11-28
Contact:
王美强
E-mail:wangmq@mail.ustc.edu.cn
摘要: 在数据包络分析中,已有的两阶段交叉效率评价方法,不仅只能用于基本两阶段网络结构,而且没有中立地分解子阶段效率。文章提出了一个既适用于基本两阶段网络结构,又适用于具有共享输入的两阶段网络结构的,中立型交叉效率评价方法。该方法定义自评时整体效率等于子阶段效率的加权和,在自评整体效率最大的前提下,从使各子阶段效率都尽可能大的角度为每个决策单元分别确定一组最优权重,进而通过互评计算决策单元整体和子阶段的最终效率得分。最后,通过两个实例验证了方法的实用、合理、有效。
中图分类号:
王美强, 黄阳. 中立型两阶段交叉效率评价方法[J]. 中国管理科学, 2022, 30(11): 229-238.
WANG Mei-qiang, HUANG Yang. A Neutral Two-stage Cross-efficiency Evaluation Approach[J]. Chinese Journal of Management Science, 2022, 30(11): 229-238.
[1] Charnes A, Cooper W W, Rhodes E. Measuring the efficiency of decision making units[J]. European Journal of Operational Research, 1978, 2: 429-444. [2] Banker R D, Charnes A, Cooper W W. Some models for estimating technical and scale inefficiencies in date envelopment analysis[J]. Management Science, 1984, 30(9): 1078-1092. [3] Liang Liang, Wu Jie, Cook W D, et al. The DEA game cross-efficiency model and its Nash equilibrium[J]. Operations Research, 2008, 56(5): 1278-1288. [4] 梁樑, 吴杰. 数据包络分析(DEA)的交叉效率研究进展与展望[J]. 中国科学技术大学学报, 2013, 43(11): 941-947.Liang Liang, Wu Jie. A retrospective and perspective view on cross efficiency of data envelopment analysis (DEA)[J]. Journal of University of Science and Technology of China, 2013, 43(11): 941-947. [5] Kao C, Liu S T. Cross efficiency measurement and decomposition in two basic network systems[J]. Omega, 2019, 83: 70-79. [6] Esmaeilzadeh A, Matin R K. Multi-period efficiency measurement of network production systems[J]. Measurement, 2019, 134: 835-844. [7] Castelli L, Pesenti R, Ukovich W. A classification of DEA models when the internal structure of the decision making units is considered[J]. Annals of Operations Research, 2010, 173(1): 207-235. [8] Kao C, Hwang S N. Efficiency decomposition in two-stage data envelopment analysis: An application to non-life insurance companies in Taiwan[J]. European Journal of Operational Research, 2008, 185(1): 418-429. [9] Sexton T R, Silkman R H, Hogan A J. Data envelopment analysis: critique and extensions[J]. New Directions for Program Evaluation, 1986, 32: 73-105. [10] Doyle J, Green R. Efficiency and cross-efficiency in DEA: Derivations, meanings and uses[J]. Journal of the Operational Research Society, 1994, 45(5): 567-578. [11] Wang Yingming, Chin K S. A neutral DEA model for cross-efficiency evaluation and its extension[J]. Expert Systems with Applications, 2010, 37(5): 3666-3675. [12] Wang Yingming, Chin K S, Jiang Peng. Weight determination in the cross-efficiency evaluation[J]. Computers & Industrial Engineering, 2011, 61(3): 497-502. [13] 李春好, 苏航, 佟轶杰, 等. 基于理想决策单元参照求解策略的DEA交叉效率评价模型[J].中国管理科学, 2015, 23(2): 116-122.Li Chunhao, Su Hang, Tong Yijie, et al. DEA cross-efficiency evaluation model by the solution strategy referring to the ideal DMU[J]. Chinese Journal of Management Science, 2015, 23(2): 116-122. [14] 刘文丽, 王应明, 吕书龙. 基于交叉效率和合作博弈的决策单元排序方法[J]. 中国管理科学, 2018, 26(4): 163-170.Liu Wenli, Wang Yingming, Lv Shulong. Ranking decision making units based on cross-efficiency and cooperative game[J]. Chinese Journal of Management Science, 2018, 26(4): 163-170. [15] Fre R, Grosskopf S. Productivity and intermediate products: A frontier approach[J]. Computational Economics, 1996, 50(1): 65-70. [16] Seiford L M, Zhu J. Profitability and marketability of the top 55 U.S. commercial banks[J]. Management Science, 1999, 45(9): 1270-1288. [17] Liang Liang, Cook W D, Zhu J, et al. DEA models for two-stage processes: Game approach and efficiency decomposition[J]. Naval Research Logistics, 2008, 55(7): 643-653. [18] Chen Yao, Cook W D, Li Ning, et al. Additive efficiency decomposition in two-stage DEA[J]. European Journal of Operational Research, 2009, 196(3): 1170-1176. [19] Cook W D, Liang Liang, Zhu J, et al. Measuring performance of two-stage network structures by DEA: A review and future perspective[J]. Omega, 2010, 38(6): 423-430. [20] 陈磊, 王应明, 王亮. 两阶段DEA分析框架下的环境效率测度与分解[J]. 系统工程理论与实践, 2016, 36(3): 642-649.Chen Lei, Wang Yingming, Wang Liang. Eco-efficiency measurement and decomposition in the two-stage DEA analysis framework[J]. Systems Engineering-Theory & Practice, 2016, 36(3): 642-649. [21] 冯志军, 陈伟. 中国高技术产业研发创新效率研究——基于资源约束型两阶段DEA模型的新视角[J]. 系统工程理论与实践, 2014, 34(5): 1202-1212.Feng Zhijun, Chen Wei. R&D innovation efficiency on Chinese higi-tech industries—Based on two-stage network DEA model with constrained resources[J]. Systems Engineering-Theory & Practice, 2014, 34(5): 1202-1212. [22] Zhou Zhongbao, Sun Liang, Yang Wenyu, et al. A bargaining game model for efficiency decomposition in the centralized model of two-stage systems[J]. Computers & Industrial Engineering, 2013, 64(1): 103-108. [23] Chu Junfei, Wu Jie, Zhu Qingyuan, et al. Analysis of China’s regional eco-efficiency: A DEA two-stage network approach with equitable efficiency decomposition[J]. Computational Economics, 2019, 54(4): 1263-1285. [24] Zuo K, Guan Jiancheng. Measuring the R&D efficiency of regions by a parallel DEA game model[J]. Scientometrics, 2017, 112(1): 175-194. [25] rkcü H H, zsoy V S, rkcü M, et al. A neutral cross efficiency approach for basic two stage production systems[J]. Expert Systems with Applications, 2019, 125: 333-344. [26] Wu Jie, Zhu Qingyuan, Ji Xiang, et al. Two-stage network processes with shared resources and resources recovered from undesirable outputs[J]. European Journal of Operational Research, 2016, 251(1): 182-197. [27] Tamiz M, Jones D, Romero C. Goal programming for decision making: An overview of the current state-of-the-art[J]. European Journal of Operational Research, 1998, 111(3): 569-581. [28] Lotfi F H, Hatami-Marbini A, Agrell P J, et al. Allocating fixed resources and setting targets using a common-weights DEA approach[J]. Computers & Industrial Engineering, 2013, 64(2): 631-640. [29] Chen Yao, Du Juan, Sherman H D, et al. DEA model with shared resources and efficiency decomposition[J]. European Journal of Operational Research, 2010, 207(1): 339-349. |
[1] | 胡婉婷,丁晶晶,梁樑. 基于期权代储协议的应急物资政企联合储备模型研究[J]. 中国管理科学, 2024, 32(9): 101-112. |
[2] | 邹清明,刘春,曹裕. 碳交易机制下考虑公平关切产出不确定的低碳供应链减排与融资策略研究[J]. 中国管理科学, 2024, 32(9): 248-259. |
[3] | 陈强,荣俊美,常旭华,宫磊. 考虑奖惩差异的高校科研考评及专利审查策略研究[J]. 中国管理科学, 2024, 32(9): 313-322. |
[4] | 聂如欣,田章朋,梁鹤鸣. 社会网络环境下基于行为管理的大群体共识决策方法[J]. 中国管理科学, 2024, 32(9): 35-47. |
[5] | 陈璐,徐海燕,张瑾木子,何亮. 基于图模型理论的模糊权力不对称冲突研究[J]. 中国管理科学, 2024, 32(9): 59-69. |
[6] | 沈种,李星梅. 多种协同关系共同作用下的项目组合决策问题研究[J]. 中国管理科学, 2024, 32(8): 139-148. |
[7] | 李晓娜,马卫民. 需求不确定下高耗水企业节水服务外包决策研究[J]. 中国管理科学, 2024, 32(8): 230-240. |
[8] | 孙向彦,曲薪池. 药占比管制下过度医疗行为多阶段动态演化研究[J]. 中国管理科学, 2024, 32(8): 308-321. |
[9] | 李想,李亚男,马红光. 考虑乘客效用的多元化共享出行平台协同定价策略研究[J]. 中国管理科学, 2024, 32(7): 172-180. |
[10] | 杜恒,卢珂. 供给短缺下考虑消费异质性的零售商定价策略[J]. 中国管理科学, 2024, 32(7): 201-211. |
[11] | 蒋兰娟,陈武华,陈晓红. 考虑医保报销与交付时间的医药零售商定价及渠道模式选择研究[J]. 中国管理科学, 2024, 32(7): 236-247. |
[12] | 杨荣庆,唐孝安,张强,黄挺. 分布式乘性偏好环境下考虑决策者偏好调整意愿的最优-最劣多准则决策方法[J]. 中国管理科学, 2024, 32(7): 65-75. |
[13] | 张磊,叶鑫. 考虑风险态度和自信行为的应急响应等级决策方法[J]. 中国管理科学, 2024, 32(6): 120-128. |
[14] | 房超,胡雅静,郑维博,冯耕中. 基于在线学习的收益信息不确定下新产品开发项目组合动态选择策略[J]. 中国管理科学, 2024, 32(6): 151-162. |
[15] | 王露,易平涛,李伟伟. 多源不确定信息的随机模拟聚合评价方法及应用[J]. 中国管理科学, 2024, 32(5): 103-112. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|