中国管理科学 ›› 2022, Vol. 30 ›› Issue (11): 229-238.doi: 10.16381/j.cnki.issn1003-207x.2020.1697cstr: 32146.14.j.cnki.issn1003-207x.2020.1697
王美强, 黄阳
收稿日期:2020-09-03
修回日期:2020-11-15
出版日期:2022-11-20
发布日期:2022-11-28
通讯作者:
王美强(1972-),男(汉族),贵州贵阳人,贵州大学管理学院,教授,博士,2019年贵州省哲学社会科学十大创新团队“军民融合与制造业转型升级”团队核心成员,研究方向:DEA方法及其应用研究,Email:wangmq@mail.ustc.edu.cn.
E-mail:wangmq@mail.ustc.edu.cn
基金资助:WANG Mei-qiang, HUANG Yang
Received:2020-09-03
Revised:2020-11-15
Online:2022-11-20
Published:2022-11-28
Contact:
王美强
E-mail:wangmq@mail.ustc.edu.cn
摘要: 在数据包络分析中,已有的两阶段交叉效率评价方法,不仅只能用于基本两阶段网络结构,而且没有中立地分解子阶段效率。文章提出了一个既适用于基本两阶段网络结构,又适用于具有共享输入的两阶段网络结构的,中立型交叉效率评价方法。该方法定义自评时整体效率等于子阶段效率的加权和,在自评整体效率最大的前提下,从使各子阶段效率都尽可能大的角度为每个决策单元分别确定一组最优权重,进而通过互评计算决策单元整体和子阶段的最终效率得分。最后,通过两个实例验证了方法的实用、合理、有效。
中图分类号:
王美强,黄阳. 中立型两阶段交叉效率评价方法[J]. 中国管理科学, 2022, 30(11): 229-238.
WANG Mei-qiang,HUANG Yang. A Neutral Two-stage Cross-efficiency Evaluation Approach[J]. Chinese Journal of Management Science, 2022, 30(11): 229-238.
| [1] Charnes A, Cooper W W, Rhodes E. Measuring the efficiency of decision making units[J]. European Journal of Operational Research, 1978, 2: 429-444. [2] Banker R D, Charnes A, Cooper W W. Some models for estimating technical and scale inefficiencies in date envelopment analysis[J]. Management Science, 1984, 30(9): 1078-1092. [3] Liang Liang, Wu Jie, Cook W D, et al. The DEA game cross-efficiency model and its Nash equilibrium[J]. Operations Research, 2008, 56(5): 1278-1288. [4] 梁樑, 吴杰. 数据包络分析(DEA)的交叉效率研究进展与展望[J]. 中国科学技术大学学报, 2013, 43(11): 941-947.Liang Liang, Wu Jie. A retrospective and perspective view on cross efficiency of data envelopment analysis (DEA)[J]. Journal of University of Science and Technology of China, 2013, 43(11): 941-947. [5] Kao C, Liu S T. Cross efficiency measurement and decomposition in two basic network systems[J]. Omega, 2019, 83: 70-79. [6] Esmaeilzadeh A, Matin R K. Multi-period efficiency measurement of network production systems[J]. Measurement, 2019, 134: 835-844. [7] Castelli L, Pesenti R, Ukovich W. A classification of DEA models when the internal structure of the decision making units is considered[J]. Annals of Operations Research, 2010, 173(1): 207-235. [8] Kao C, Hwang S N. Efficiency decomposition in two-stage data envelopment analysis: An application to non-life insurance companies in Taiwan[J]. European Journal of Operational Research, 2008, 185(1): 418-429. [9] Sexton T R, Silkman R H, Hogan A J. Data envelopment analysis: critique and extensions[J]. New Directions for Program Evaluation, 1986, 32: 73-105. [10] Doyle J, Green R. Efficiency and cross-efficiency in DEA: Derivations, meanings and uses[J]. Journal of the Operational Research Society, 1994, 45(5): 567-578. [11] Wang Yingming, Chin K S. A neutral DEA model for cross-efficiency evaluation and its extension[J]. Expert Systems with Applications, 2010, 37(5): 3666-3675. [12] Wang Yingming, Chin K S, Jiang Peng. Weight determination in the cross-efficiency evaluation[J]. Computers & Industrial Engineering, 2011, 61(3): 497-502. [13] 李春好, 苏航, 佟轶杰, 等. 基于理想决策单元参照求解策略的DEA交叉效率评价模型[J].中国管理科学, 2015, 23(2): 116-122.Li Chunhao, Su Hang, Tong Yijie, et al. DEA cross-efficiency evaluation model by the solution strategy referring to the ideal DMU[J]. Chinese Journal of Management Science, 2015, 23(2): 116-122. [14] 刘文丽, 王应明, 吕书龙. 基于交叉效率和合作博弈的决策单元排序方法[J]. 中国管理科学, 2018, 26(4): 163-170.Liu Wenli, Wang Yingming, Lv Shulong. Ranking decision making units based on cross-efficiency and cooperative game[J]. Chinese Journal of Management Science, 2018, 26(4): 163-170. [15] Fre R, Grosskopf S. Productivity and intermediate products: A frontier approach[J]. Computational Economics, 1996, 50(1): 65-70. [16] Seiford L M, Zhu J. Profitability and marketability of the top 55 U.S. commercial banks[J]. Management Science, 1999, 45(9): 1270-1288. [17] Liang Liang, Cook W D, Zhu J, et al. DEA models for two-stage processes: Game approach and efficiency decomposition[J]. Naval Research Logistics, 2008, 55(7): 643-653. [18] Chen Yao, Cook W D, Li Ning, et al. Additive efficiency decomposition in two-stage DEA[J]. European Journal of Operational Research, 2009, 196(3): 1170-1176. [19] Cook W D, Liang Liang, Zhu J, et al. Measuring performance of two-stage network structures by DEA: A review and future perspective[J]. Omega, 2010, 38(6): 423-430. [20] 陈磊, 王应明, 王亮. 两阶段DEA分析框架下的环境效率测度与分解[J]. 系统工程理论与实践, 2016, 36(3): 642-649.Chen Lei, Wang Yingming, Wang Liang. Eco-efficiency measurement and decomposition in the two-stage DEA analysis framework[J]. Systems Engineering-Theory & Practice, 2016, 36(3): 642-649. [21] 冯志军, 陈伟. 中国高技术产业研发创新效率研究——基于资源约束型两阶段DEA模型的新视角[J]. 系统工程理论与实践, 2014, 34(5): 1202-1212.Feng Zhijun, Chen Wei. R&D innovation efficiency on Chinese higi-tech industries—Based on two-stage network DEA model with constrained resources[J]. Systems Engineering-Theory & Practice, 2014, 34(5): 1202-1212. [22] Zhou Zhongbao, Sun Liang, Yang Wenyu, et al. A bargaining game model for efficiency decomposition in the centralized model of two-stage systems[J]. Computers & Industrial Engineering, 2013, 64(1): 103-108. [23] Chu Junfei, Wu Jie, Zhu Qingyuan, et al. Analysis of China’s regional eco-efficiency: A DEA two-stage network approach with equitable efficiency decomposition[J]. Computational Economics, 2019, 54(4): 1263-1285. [24] Zuo K, Guan Jiancheng. Measuring the R&D efficiency of regions by a parallel DEA game model[J]. Scientometrics, 2017, 112(1): 175-194. [25] rkcü H H, zsoy V S, rkcü M, et al. A neutral cross efficiency approach for basic two stage production systems[J]. Expert Systems with Applications, 2019, 125: 333-344. [26] Wu Jie, Zhu Qingyuan, Ji Xiang, et al. Two-stage network processes with shared resources and resources recovered from undesirable outputs[J]. European Journal of Operational Research, 2016, 251(1): 182-197. [27] Tamiz M, Jones D, Romero C. Goal programming for decision making: An overview of the current state-of-the-art[J]. European Journal of Operational Research, 1998, 111(3): 569-581. [28] Lotfi F H, Hatami-Marbini A, Agrell P J, et al. Allocating fixed resources and setting targets using a common-weights DEA approach[J]. Computers & Industrial Engineering, 2013, 64(2): 631-640. [29] Chen Yao, Du Juan, Sherman H D, et al. DEA model with shared resources and efficiency decomposition[J]. European Journal of Operational Research, 2010, 207(1): 339-349. |
| [1] | 张发明, 韩江涛, 张淋茜, 朱姝琪. 社会信任网络下基于T2PLD算子的多属性大群体决策方法[J]. 中国管理科学, 2025, 33(9): 177-188. |
| [2] | 李聪聪, 梁海明, 董玉成. 多粒度语言环境下基于持续学习和行为建模的个性化语义共识决策模型[J]. 中国管理科学, 2025, 33(9): 201-212. |
| [3] | 景熠, 张闻秋, 曹柳. 电商购物平台与回收平台的“以旧换新”合作策略研究[J]. 中国管理科学, 2025, 33(8): 289-297. |
| [4] | 代业明, 于双. 碳税政策下考虑零售商双重行为偏好的再制造闭环供应链决策[J]. 中国管理科学, 2025, 33(8): 308-320. |
| [5] | 张侃, 刘思施, 魏华, 余鹏, 梁新. 基于CPSO改进的TOPSIS三维空间组合定权投影动态综合评价研究[J]. 中国管理科学, 2025, 33(7): 117-127. |
| [6] | 董乾坤, 易平涛, 李伟伟, 王露. 基于多源混合评价信息的随机聚合指数及应用[J]. 中国管理科学, 2025, 33(7): 128-138. |
| [7] | 李进, 江赫奇, 丁圣琪, 张海霞, 伍蓓. 碳交易机制下竞争型供应链最优减排与规制政策研究[J]. 中国管理科学, 2025, 33(7): 360-368. |
| [8] | 缑迅杰, 徐鑫茹, 徐泽水. 基于动态社会网络的能源转型路径评估多属性群决策建模研究[J]. 中国管理科学, 2025, 33(6): 346-359. |
| [9] | 罗世华, 刘俊. 拓展区间Fermatean模糊前景理论综合评价方法[J]. 中国管理科学, 2025, 33(6): 129-139. |
| [10] | 张磊, 韩可可, 叶鑫. 广义Z-numbers证据下考虑专家影响力和评价值一致性的应急决策方法[J]. 中国管理科学, 2025, 33(6): 160-170. |
| [11] | 常志朋, 王治莹, 陈闻鹤. 基于模糊影响图和前景理论的重大疫情防控策略决策方法[J]. 中国管理科学, 2025, 33(6): 171-181. |
| [12] | 赵程伟, 徐选华, 刘瑞环, 何继善. 模糊异构环境下考虑双重交互及不完全理性心理的多属性群决策及应用[J]. 中国管理科学, 2025, 33(6): 182-195. |
| [13] | 张思琪, 朱建军. 考虑“因素-阶段”双重关联的复杂装备交付风险动态评估方法[J]. 中国管理科学, 2025, 33(5): 173-183. |
| [14] | 高歌, 刘月, 孙会君. 考虑前需求扰动的预约停车多阶段拍卖策略研究[J]. 中国管理科学, 2025, 33(5): 195-202. |
| [15] | 程栋, 侯剑琳, 程发新. 预算约束下考虑属性关联的最大效用共识模型[J]. 中国管理科学, 2025, 33(4): 120-130. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
|
||