[1] Charnes A, Cooper W W, Rhodes E. Measuring the efficiency of decision making units[J]. European Journal of Operational Research, 1978, 2(6): 429-444. [2] Sueyoshi T, Goto M. DEA environmental assessment in a time horizon: Malmquist index on fuel mix, electricity and CO2 of industrial nations[J]. Energy Economics, 2013,40, 370-382. [3] Sexton T R, Silkman R H, Hogan A J. Data envelopment analysis: Critique and extensions[J]. New Directions for Program Evaluation, 1986,32: 73-105. [4] Doyle J, Green R. Efficiency and cross-efficiency in DEA: Derivations, meanings and uses[J]. Journal of the Operational Research Society, 1994, 45(5): 567-578. [5] Wang Yingming, Chin KwaiSang. A neutral DEA model for cross-efficiency evaluation and its extension[J]. Expert Systems with Applications, 2010, 37(5): 3666-3675. [6] Liang Liang, Wu Jie, Cook W D, et al. The DEA game cross-efficiency model and its Nash equilibrium[J]. Operations Research, 2008, 56(5): 1278-1288. [7] 刘文丽,王应明,吕书龙.基于交叉效率和合作博弈的决策单元排序方法[J].中国管理科学, 2018,26(4):163-170.Liu Wenli, Wang Yingming, Lu Shulong. Decision making unit ranking method based on cross efficiency and cooperative game [J]. Chinese Journal of Management Science, 2018,26 (4): 163-170. [8] 李春好,苏航,佟轶杰,等.基于理想决策单元参照求解策略的DEA交叉效率评价模型[J].中国管理科学,2015,23(2):116-122.Li Chunhao, Su Hang, Tong Yijie, et al. DEA cross efficiency evaluation model based on ideal decision unit reference solving strategy [J]. Chinese Journal of Management Science, 2015,23 (2): 116-122. [9] Wu Jie, Sun Jiashen, Liang Liang. DEA cross-efficiency aggregation method based upon Shannon entropy[J]. International Journal of Production Research, 2012, 50(23): 6726-6736. [10] Yang Guoliang, Yang Jianbo, Liu Wenbin, et al. Cross-efficiency aggregation in DEA models using the evidential-reasoning approach[J]. European Journal of Operational Research, 2013, 231(2): 393-404. [11] Song Malin, Zhu Qingyuan, Peng Jun, et al. Improving the evaluation of cross efficiencies: A method based on Shannon entropy weight[J]. Computers & Industrial Engineering, 2017, 112: 99-106. [12] 张启平,刘业政,姜元春.决策单元交叉效率的自适应群评价方法[J].中国管理科学,2014,22(11):62-71.Zhang Qiping, Liu Yezheng, Jiang Yuanchun. Adaptive group evaluation method for cross efficiency of decision-making units [J]. Chinese Journal of Management Science, 2014,22 (11): 62-71. [13] Wang Yingming M, Chin KwaiSang. The use of OWA operator weights for cross-efficiency aggregation[J]. Omega, 2011, 39(5): 493-503. [14] 陈磊, 王应明. 基于前景理论的交叉效率集结方法[J]. 系统科学与数学, 2018,38(11):1307-1316.Chen Lei, Wang Yingming. Cross efficiency aggregation method based on prospect theory[J]. Systems Science & Mathematics, 2018,38 (11): 1307-1316. [15] Dempster A P. Upper and lower probabilities induced by a multivalued mapping[M]//Classic works of the Dempster-Shafer theory of belief functions. Springer, Berlin, Heidelberg, 2008: 57-72. [16] Shafer G. A mathematical theory of evidence[M]. Princeton: Princeton university press, 1976. [17] Yang Jianbo. Rule and utility based evidential reasoning approach for multiattribute decision analysis under uncertainties[J]. European Journal of Operational Research, 2001, 131(1): 31-61. [18] Yang Jianbo, Xu Dongling. On the evidential reasoning algorithm for multiattribute decision analysis under uncertainty[J]. IEEE Transactions on Systems, Man, and Cybernetics Part A: Systems and Humans, 2002, 32 (3), 1-17. [19] Walley P. Measures of uncertainty in expert systems[J]. Artificial intelligence. 1996,83(1):1-58. [20] Ng C Y, Law K M Y. Investigating consumer preferences on product designs by analyzing opinions from social networks using evidential reasoning[J]. Computers & Industrial Engineering, 2020, 139: 106180. [21] Sadeghi A, Farhad H, Moghaddam A M, et al. Identification of accident-prone sections in roadways with incomplete and uncertain inspection-based information: A distributed hazard index based on evidential reasoning approach[J]. Reliability Engineering & System Safety, 2018, 178: 278-289. [22] Chen Shengqun, Wang Yingming, Shi Hailiu, et al. Evidential reasoning with discrete belief structures[J]. Information Fusion, 2018, 41: 91-104. [23] Qin Jingdong, Xi Yan, Pedrycz W. Failure mode and effects analysis (FMEA) for risk assessment based on interval type-2 fuzzy evidential reasoning method[J]. Applied Soft Computing, 2020, 89: 106134. [24] Ye Jianmei, Xu Zeshui, Gou Xunjie. Virtual linguistic trust degree-based evidential reasoning approach and its application to emergency response assessment of railway station[J]. Information Sciences, 2020, 513: 341-359. [25] 张自欣, 王亮, 王应明, 等. 基于证据推理的突发事件预警方法研究[J].中国管理科学, 2015,23(S1): 291-296.Zhang Zixin, Wang Liang, Wang Yingming, et al. Research on emergency early warning method based on evidential reasoning [J]. Chinese Journal of Management Science, 2015,23 (S1): 291-296. [26] Yuan Jiahang, Luo Xinggang. Approach for multi-attribute decision making based on novel intuitionistic fuzzy entropy and evidential reasoning[J]. Computers & Industrial Engineering, 2019, 135: 643-654. [27] 朱建军,王翯华,胡宏宇,等.群决策中指标冲突问题的证据推理决策模型[J].中国管理科学,2012,20(S1):101-107.Zhu Jianjun, Wang Zhenhua, Hu Hongyu, et al. Evidence reasoning decision model for index conflict in group decision making [J]. Chinese Journal of Management Science, 2012,20(S1): 101-107. [28] 朱卫东,刘芳,王东鹏,等.科学基金项目立项评估:综合评价信息可靠性的多指标证据推理规则研究[J].中国管理科学,2016,24(10):141-148.Zhu Weidong, Liu Fang, Wang Dongpeng, et al. evaluation of science fund project initiation: Research on multi index evidence reasoning rules for comprehensive evaluation of information reliability [J]. Chinese Journal of Management Science, 2016,24(10): 141-148. [29] Yang Jianbo, Singh M G. An evidential reasoning approach for multiple-attribute decision making with uncertainty[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1994, 24(1): 1-18. [30] Tversky A, Kahneman D. Advances in prospect theory: Cumulative representation of uncertainty[J]. Journal of Risk and Uncertainty, 1992, 5(4): 297-323. [31] Wong Y H B, Beasley J E. Restricting weight flexibility in data envelopment analysis[J]. Journal of the Operational Research Society, 1990, 41(9): 829-835.
|