[1] Jianwei E, Li Shenggang, Ye Jimin. A new approach to gold price analysis based on variational mode decomposition and independent component analysis[J]. Acta Physica Polonica B, 2017, 48(11). 2093-2115. [2] Chi Guotai, Li Zhanjiang. Forecast model of stock index futures prices based on small sample[J]. ICIC Express Letters. Part B, Applications: An International Journal of Research and Surveys, 2014, 5(3): 657-662. [3] Wang Chunyang. Forecast on price of agricultural futures in China based on ARIMA model[J]. Asian Agricultural Research, 2016, 8(1812-2016-144753): 9-16. [4] Kuo Pinglin, Ping Fengpai, Shun Lingyang. Forecasting concentrations of air pollutants by logarithm support vector regression with immune algorithms[J]. Applied Mathematics and Computation, 2011, 217(12): 5318-5327. [5] Baruník J, Malinska B. Forecasting the term structure of crude oil futures prices with neural networks[J]. Applied Energy, 2016, 164: 366-379. [6] Zhang Yu, He Jia, Yin Tengfei. Research on petroleum price prediction based on SVM[J]. Computer Simulation, 2012,29 (3): 375-377+388. [7] Chen H H, Chen M, Chiu C C. The integration of artificial neural networks and text mining to forecast gold futures prices[J]. Communications in Statistics-Simulation and Computation, 2016, 45(4): 1213-1225. [8] Huang Guangbin, Zhu Qinyu, Siew C K. Extreme learning machine: Theory and applications[J]. Neurocomputing, 2006, 70(1-3): 489-501. [9] Chorowski J, Wang Jian, Zurada J M. Review and performance comparison of SVM-and ELM-based classifiers[J]. Neurocomputing, 2014, 128(27): 507-516. [10] Chyzhyk D, Savio A, Graa M. Computer aided diagnosis of schizophrenia on resting state fMRI data by ensembles of ELM[J]. Neural Networks, 2015, 68: 23-33. [11] Xia Chen, Zhao Yangdong, Ke Meng, et al. Electricity price forecasting with extreme learning machine and bootstrapping[J]. IEEE Transactions on Power Systems, 2012, 27(4): 2055-2062. [12] 孙晓蕾,姚晓阳,杨玉英,等. 国家风险动态性的多尺度特征提取与识别:以OPEC国家为例[J]. 中国管理科学, 2015, 23(4): 1-10.Sun Xiaolei, Yao Xiaoyang, Yang Yuying, et al. Multi-scale feature extraction and identification of country risk dynamics: case of OPEC countries[J]. Chinese Journal of Management Science, 2015, 23(4): 1-10. [13] 汤铃,余乐安,李建平,等. 复杂时间序列预测技术研究:数据特征驱动分解集成方法论[M]. 北京: 科学出版社, 2016.Tang Ling, Yu Le’an, Li Jianping, et al. Research on complex time series prediction technology: data feature driven decomposition and integration methodology[M]. Beijing: Science Press, 2016. [14] 王珏,齐琛,李明芳. 基于SSA-ELM的大宗商品价格预测研究[J]. 系统工程理论与实践, 2017, 37(8): 2004-2014.Wang Jue, Qi Chen, Li Mingfang. Prediction of commodity price based on SSA-ELM[J]. Systems Engineering-Theory & Practice, 2017, 37(8): 2004-2014. [15] 潘和平,张承钊. FEPA-金融时间序列自适应组合预测模型[J]. 中国管理科学, 2018, 26(6): 26-38.Pan Heping, Zhang Chengzhao. FEPA: an adaptive integrated prediction model of financial time series[J]. Chinese Journal of Management Science, 2018, 26(6): 26-38. [16] Wang Deyun, Yue Chenqiang, Wei Shuai, et al. Performance analysis of four decomposition-ensemble models for one-day-ahead agricultural commodity futures price forecasting[J]. Algorithms, 2017, 10(3): 108-132. [17] Huang N E, Shen Zheng, Long S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society A, 1998, 454(1971): 903-995. [18] 周德群,鞠可一,周鹏,等. 石油价格波动预警分级机制研究[J]. 系统工程理论与实践, 2013, 33(3): 585-592.Zhou Dequn, Ju Keyi, Zhou Peng, et al. Early-warning grading system for oil price shocks based on Hilbert-Huang transform[J]. Systems Engineering-Theory & Practice, 2013, 33(3): 585-592. [19] Lin C S, Chiu S H, Lin T Y. Empirical mode decomposition-based least squares support vector regression for foreign exchange rate forecasting[J]. Economic Modelling, 2012,29(6):2583-2590. [20] 王书平,胡爱梅,吴振信. 基于多尺度组合模型的铜价预测研究[J]. 中国管理科学, 2014, 22(8): 21-28.Wang Shuping, Hu Aimei, Wu Zhenxin. Forecasting of copper price based on multi-scale combined model[J]. Chinese Journal of Management Science, 2014, 22(8): 21-28. [21] 秦宇.应用经验模态分解的上海股票市场价格趋势分解及周期性分析[J]. 中国管理科学, 2008, 16(S1): 219-225. Qin Yu. Trend-cycle decomposition and cycle analysis of stock price in Shanghai stock market using empirical mode decomposition[J]. Chinese Journal of Management Science, 2008, 16(S1): 219-225. [22] 王文波,费浦升,羿旭明. 基于EMD与神经网络 的中国股票市场预测[J]. 系统工程理论与实践, 2010, 30(6): 1027-1033. Wang Wenbo, Fei Pusheng, Yi Xuming. Prediction of China stock market based on EMD and neural network[J]. Systems Engineering-Theory & Practice, 2010, 30(6): 1027-1033. [23] 何凯,苏梽芳,何卫平. 上证基金指数波动结构分解与短期预测:基于EEMD模型[J]. 金融理论与实践, 2014(1): 80-85.He Kai, Su Zhifang, He Weiping. Volatility structure decomposition and short-term prediction of Shanghai securities fund index: Based on EEMD[J]. Financial Theory & Practice, 2014(1): 80-85. [24] Dragomiretskiy K, Zosso D. Variational mode decomposition[J]. IEEE Transactions on Signal Processing, 2013, 62(3): 531-544. [25] Wu Zhaohua, Huang N E. A study of the characteristics of white noise using the empirical mode decomposition method[J]. Proceedings of the Royal Society A, 2004, 460(2046): 1597-1611. [26] Mozeticˇ I, Torgo L, Cerqueira V, et al. How to evaluate sentiment classifiers for Twitter time-ordered data?[J]. PloS One, 2018, 13(3): e0194317.
|