主管:中国科学院
主办:中国优选法统筹法与经济数学研究会
   中国科学院科技战略咨询研究院

中国管理科学 ›› 2023, Vol. 31 ›› Issue (11): 312-320.doi: 10.16381/j.cnki.issn1003-207x.2019.1200

• • 上一篇    下一篇

考虑旅客选择行为的多舱位等级动态定价研究

陈梦曦1,2(),田澎1,李相勇3   

  1. 1.上海交通大学安泰经济与管理学院, 上海 200030
    2.福州大学经济与管理学院, 福建 福州 350108
    3.同济大学经济与管理学院, 上海 200092
  • 收稿日期:2019-08-13 修回日期:2019-11-05 出版日期:2023-11-15 发布日期:2023-11-20
  • 通讯作者: 陈梦曦 E-mail:chenmx@fzu.edu.cn
  • 基金资助:
    国家自然科学基金资助面上项目(71532015);上海市教育发展基金会和上海市教育委员会“曙光计划”资助项目(SG23)

Dynamic Pricing Model for Multi-class Problem Considering Air Passengers' Choice Behavior

Meng-xi CHEN1,2(),Peng TIAN1,Xiang-yong LI3   

  1. 1.Antai College of Economics and Management, Shanghai Jiao Tong University, Shanghai 200030, China
    2.School of Economics and Management, Fuzhou University, Fuzhou 350108, China
    3.School of Economics and Management, Tongji University, Shanghai 200092, China
  • Received:2019-08-13 Revised:2019-11-05 Online:2023-11-15 Published:2023-11-20
  • Contact: Meng-xi CHEN E-mail:chenmx@fzu.edu.cn

摘要:

通过实证方法研究了考虑旅客选择行为的多舱位等级动态定价决策问题。基于多元Logit选择模型,提出了考虑票价、售出数量、变更转签限制、退票费用限制和提前预订天数等因素的旅客选择行为模型,并结合航空公司历史运营数据使用马尔可夫蒙特卡洛方法对旅客到达率以及旅客选择行为模型中的属性参数进行了估计。在此基础上,构建了融合旅客到达率和旅客选择行为的多舱位等级动态定价决策模型,用以阐释考虑旅客选择行为的舱位等级最优价格决策过程,确定每个时期舱位等级的定价策略,评估基于旅客选择的定价策略相较于现行定价策略的收益改进。实证结果表明:当决策时间点临近航班出发日时,舱位等级价格会随之提高;在同一个决策时间点,舱位等级价格会随座位余量的减少而提高。相较于现行定价策略,基于旅客选择的定价策略预期收益提高了22.32%,证明了基于旅客选择的定价策略在现实环境中的可行性和经济性。

关键词: 旅客选择行为, 航空收益管理, 动态定价, 多元Logit模型

Abstract:

In this paper, the dynamic pricing problem of multi-class considering passengers’ choice behavior is studied by empirical research. The passengers’ choice behavior is modelled using a Multinomial Logit model. This passengers’ choice model characterizes observable attributes of passengers, including price, the number of tickets, transfer limits, refund limits and advance booking days. Then Markov Chain Monte Carlo method is used to estimate the parameters of passengers’ choice model and passengers’ arrival rate based on real operational data of airline industry. On this basis, a new dynamic pricing model applying the arrival rate and the parameters of passengers’ choice model is proposed to present the optimal price decision making process. The choice model estimates are then used to access the revenue performance of the current pricing strategy by the airline relative to pricing strategy optimized to account for passenger’s choice behavior. Empirical results show that, the optimal price decision according to the available seats of each class in each time period can be obtained. When the decision time is approaching the departure date, the optimal price of each class will increase accordingly. The price of each class will increase with the reduction of available seats at the same decision period. Our results show 22.32% average revenue improvements using the pricing strategy considering choice behavior. Especially, expected revenue of the flights with low revenue in actual will significantly increase by the pricing strategy considering passengers’ choice behavior. Overall, it is suggested that pricing strategy based on passengers’ choice behavior is both feasible to execute and economically significant in real-world airline environments.

Key words: passengers’ choice behavior, airline revenue management, dynamic pricing, multinomial logit model

中图分类号: