1 |
Porter’s V C M. What is value chain[J]. E-Commer, 1985: 1-13.
|
2 |
Horvath L. Collaboration: the key to value creation in supply chain management[J].Supply Chain Management: An International Journal, 2001, 6(5): 205-207.
|
3 |
洪江涛, 黄沛. 企业价值链上协同知识创新的动态决策模型[J].中国管理科学,2011,19(4): 130-136.
|
|
Hong Jiangtao, Huang Pei. Dynamic decision model of collaboration knowledge creation in enterprise value chain[J]. Chinese Journal of Management Science, 2011, 19(4): 130-136.
|
4 |
Wu Liang, Liu Heng, Bao Yongchuan. Outside-in thinking, value chain collaboration and business model innovation in manufacturing firms[J]. Journal of Business & Industrial Marketing, 2021.
|
5 |
Kubat C, Yuce B. A hybrid intelligent approach for supply chain management system[J]. Journal of Intelligent Manufacturing, 2012, 23(4): 1237-1244.
|
6 |
Rettore P H, Maia G, Villas L A, et al. Vehicular data space: the data point of view[J]. IEEE Communications Surveys & Tutorials, 2019, 21(3): 2392-2418.
|
7 |
蓝伯雄, 王亚明, 王威. 企业资源优化与企业价值链分析[J].中国管理科学, 2011,19(1): 69-76.
|
|
Lan Boxiong, Wang Yaming, Wang Wei. Enterprise resource optimization and value chain analysis[J]. Chinese Journal of Management Science, 2011, 19(1): 69-76.
|
8 |
王长峰, 王化兰, 史志武, 等. 复杂动态环境下特大型科技(工程)项目组织知识流程集成优化和实证研究[J].中国管理科学, 2012,20(S1): 247-256.
|
|
Wang Changfeng, Wang Hualan, Shi Zhiwu, et al. The research on of the extra large - scale science and technology (engineering) project organizational knowledge process integration and optimization under the complex dynamic environment[J] Chinese Journal of Management Science, 2012, 20(S1), 247-256.
|
9 |
Zhou Ji. Digitalization and intelligentization of manufacturing industry[J]. Advances in Manufacturing, 2013, 1(1): 1-7.
|
10 |
Lahat D, Adali T, Jutten C. Multimodal data fusion: an overview of methods, challenges, and prospects[J]. Proceedings of the IEEE, 2015, 103(9): 1449-1477.
|
11 |
Baird L, Henderson J C. The knowledge engine: how to create fast cycles of knowledge-to-performance and performance-to-knowledge[M].San Francisco, Berrett-Koehler Publishers, 2001.
|
12 |
朱禹涛, 肖霖, 陈泽仁, 等. 面向智慧工厂的工业互联网边缘智能协同计算技术研究[J]. 信息通信技术与政策, 2021, 47(3): 1-5.
|
|
Zhu Yutao, Xiao Lin, Chen Zeren, et al. Research on edge intelligent cooperative computing technology in Industrial Internet for intelligent factory[J]. Information and Communications Technology and Policy, 2021, 47(3): 1-5.
|
13 |
张博, 贾晓亮, 周丹晨, 等. 基于语义特征项列表的工艺知识推送技术研究[J].现代制造工程,2016(9): 63-74.
|
|
Zhang Bo, Jia Xiaoliang, Zhou Danchen, et al. Research on process knowledge push based on semantic feature list[J]. Modern Manufactruing Engineering,2016(9): 63-74.
|
14 |
倪子健, 李文强, 唐忠. 基于网络表示学习的本体语义挖掘与功能语义检索方法[J]. 工程设计学报, 2021, 28(5): 539-547.
|
|
Ni Zijian, Li Wenqiang, Tang Zhong. Ontology semantic mining and functional semantic retrieval method based on network representation learning[J]. Chinese Journal of Engineering Design, 2021, 28(5): 539-547.
|
15 |
何焱, 马军, 白卫星, 等. 基于本体语义的复杂产品可重构制造服务协同建模研究[J]. 制造业自动化, 2013, 35(15): 57-59.
|
|
He Yan, Ma Jun, Bai Weixing, et al. Research on complex product reconfi guration manufacture service collaboration modeling based on ontology semantic[J]. Manufacturing Automation, 2013, 35(15): 57-59.
|
16 |
丁乐宁.多维耦合约束下的铁路站场横断面本体建模[C]//第十八届站场与枢纽年会.中国陕西西安,2017: 358-361.
|
|
Ding Lening. Ontology modeling of railway station Cross-section under Multi-dimensional coupling constraints.[C]//In Proceedings of the 18th Annual Conference on Station and Hub,Xi'an, Shanxi, China, 2017:358-361.
|
17 |
Friedman J H. Greedy function approximation: a gradient boosting machine[J]. Annals of statistics, 2001: 1189-1232.
|
18 |
Segal M R. Machine learning benchmarks and random forest regression[J/OL].2004[2022-11-24]. .
|
19 |
Lundberg S M, Lee S I. A unified approach to interpreting model predictions[C/OL]//Advances in Neural Information Processing Systems Curran Associates, Inc., 2017[2022-11-25]. .
|
20 |
刘航, 杜江, 白瑀. 基于多维度本体的制造业领域知识语义建模研究[J/OL]. 制造技术与机床, 2019(9): 140-146. DOI:10.19287/j.cnki.1005-2402.2019.09.030 .
doi: 10.19287/j.cnki.1005-2402.2019.09.030
|
|
Liu Hang, Du Jiang, Bai Yu. Research on semantic modeling based on multi-dimension ontology for manufacturing domain knowledge[J/OL]. Manufacturing Technology & Machine Tool, 2019(9): 140-146.DOI:10.19287/j.cnki.1005-2402.2019.09.030 .
doi: 10.19287/j.cnki.1005-2402.2019.09.030
|
21 |
Ke Guolin, Meng Qi, Finley T, et al. LightGBM: a highly efficient gradient boosting decision tree[C/OL]//Advances in Neural Information Processing Systems Curran Associates, Inc., 2017[2022-11-24]..
|
22 |
Chen Tianqi, Guestrin C. XGBoost: a scalable tree boosting system[C/OL]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco California USA: ACM, 2016: 785-794 [2022-11-24]. . DOI:10.1145/2939672.2939785 .
doi: 10.1145/2939672.2939785
|
23 |
Lundberg S M, Erion G G, Lee S I. Consistent individualized feature attribution for tree ensembles[M/OL]. arXiv, 2019[2022-11-25]. .
|
24 |
Hung Y H, Wang Yijie, Chang R I. Investigation of the effective use of ensemble learning algorithms for cyber data analytics-the prediction of the customer revenue on the google merchandise store (GStore)[C/OL]//2020 The 4th International Conference on E-Society, E-Education and E-Technology, Taipei Taiwan, ACM, 2020: 76-82 [2022-11-25]. . DOI:10.1145/3421682.3421690 .
doi: 10.1145/3421682.3421690
|