1 |
Kumar S, Deo N. Correlation and network analysis of global financial indices[J]. Physical Review E, 2012, 86(2):026101.
|
2 |
Wang G J, Xie C, He K, Stanley H E. Extreme risk spillover network: application to financial institutions[J]. Quantitative Finance, 2017,17:1417-1433.
|
3 |
Bellenzier L, Vitting Andersen J, Rotundo G. Contagion in the world’s stock exchanges seen as a set of coupled oscillators[J]. Economic Modelling, 2016, 59: 224–236.
|
4 |
Zhang X, Zheng X, Zeng D D. The dynamic interdependence of international financial markets: an empirical study on twenty-seven stock markets[J]. Physica A: Statistical Mechanics and its Applications, 2017, 472: 32-42.
|
5 |
袁磊,耿新.私人数字货币与资本流出——以比特币为例的研究[J].国际金融研究,2020(6):11.
|
|
Yuan L, Geng X. Private cryptocurrency and capital outflow——taking bitcoin as an example[J]. Studies of International Finance, 2020(6): 11.
|
6 |
Cao G, Xie W. The impact of the shutdown policy on the asymmetric interdependence structure and risk transmission of cryptocurrency and China’s financial market[J]. The North American Journal of Economics and Finance, 2021, 58:101514.
|
7 |
Acemoglu D, Ozdaglar A, Tahbaz-Salehi A.Systemic risk and stability in financial networks[J]. American Economic Review, 2015, 105:564-608.
|
8 |
Ozdagli A, Weber M. Monetary policy through production networks: evidence from the stock market[R]. Working Paper, National Bureau of Economic Research,2017.
|
9 |
Silva T C, da Silva Alexandre M, Tabak B M. Bank lending and systemic risk: a financial-real sector network approach with feedback[J]. Journal of financial Stability, 2018, 38: 98-118.
|
10 |
Herskovic B, Kelly B, Lustig H, et al. Firm volatility in granular networks[J]. Journal of Political Economy, 2020, 128: 4097-4162.
|
11 |
Huang J, Li Z, Xia X. Network diffusion of international oil volatility risk in China's stock market: quantile interconnectedness modelling and shock decomposition analysis[J].International Review of Economics & Finance, 2021, 76: 1-39.
|
12 |
Bouri E, Gupta R, Tiwari A K, et al. Does bitcoin hedge global uncertainty? evidence from wavelet-based quantile-in-quantile regressions[J]. Finance Research Letters, 2017, 23: 87-95.
|
13 |
Bouri E, Molnár P, Azzi G, et al. On the hedge and safe haven properties of Bitcoin: is it really more than a diversifier?[J]. Finance Research Letters, 2017, 20: 192-198.
|
14 |
Trabelsi N. Are there any volatility spill-over effects among cryptocurrencies and widely traded asset classes?[J]. Journal of Risk & Financial Management, 2018, 11(4): 66.
|
15 |
Urom C, Abid I, Guesmi K, et al. Quantile spillovers and dependence between Bitcoin, equities and strategic commodities[J].Economic Modelling,2020,93: 230-258.
|
16 |
Wang G, Tang Y, Xie C, et al. Is bitcoin a safe haven or a hedging asset? Evidence from China[J]. Journal of Management Science and Engineering, 2019, 4(3): 173-188.
|
17 |
Asgharian H, Hess W, Liu L. A spatial analysis of international stock market linkages[J]. Journal of Banking & Finance, 2013, 37(12): 4738-4754.
|
18 |
Jiang S, Jin X. Effects of investor sentiment on stock return volatility: a spatio-temporal dynamic panel model[J]. Economic Modelling, 2021, 97: 298-306.
|
19 |
李爱忠,任若恩,董纪昌.金融网络风险下多因子矩阵回归的资产组合与定价[J].中国管理科学,2021,29(6):1-9.DOI:10.16381/j.cnki.issn1003-207x.2019.0720 .
doi: 10.16381/j.cnki.issn1003-207x.2019.0720
|
|
Li A Z, Ren R E, Dong J C. Asset portfolio and pricing of multi-factor matrix regression under financial network risk[J]. Chinese Journal of Management Science, 2021,29(6): 1-9. DOI:10.16381/j.cnki.issn1003-207x.2019.0720 .
doi: 10.16381/j.cnki.issn1003-207x.2019.0720
|
20 |
Baumöhl E, Shahzad S J H. Quantile coherency networks of international stock markets[J].Finance Research Letters, 2019, 31: 119-129.
|
21 |
Deev O, Lyócsa Š. Connectedness of financial institutions in europe: a network approach across quantiles[J]. Physica A: Statistical Mechanics and its Applications, 2020, 550: 124035.
|
22 |
Baruník J, Kley T. Quantile coherency: a general measure for dependence between cyclical economic variables[J].The Econometrics Journal,2019,22(2): 131-152.
|
23 |
Sim N, Zhou H. Oil prices, US stock return, and the dependence between their quantiles[J]. Journal of Banking & Finance, 2015, 55:1-8.
|
24 |
Han H, Linton O, Oka T, et al. The cross-quantilogram: measuring quantile dependence and testing directional predictability between time series[J]. Journal of Econometrics, 2016, 193(1): 251-270.
|
25 |
Bonaccolto G, Caporin M, Panzica R. Estimation and model-based combination of causality networks among large US banks and insurance companies[J]. Journal of Empirical Finance, 2019, 54: 1-21.
|
26 |
Elhorst J P. Specification and estimation of spatial panel data models[J]. International regional science review, 2003, 26: 244-268.
|
27 |
Lesage J P, Pace R K. Spatial econometric models[M].Berlin, Heidelberg: Springer, 2010.
|
28 |
Debarsy N, Dossougoin C, Ertur C, et al. Measuring sovereign risk spillovers and assessing the role of transmission channels: a spatial econometrics approach[J]. Journal of Economic Dynamics and Control, 2018, 87: 21-45.
|
29 |
Kou S, Peng X, Zhong H. Asset pricing with spatial interaction[J].Management Science, 2018, 64: 2083-2101.
|
30 |
Milcheva S, Zhu B. Asset pricing, spatial linkages and contagion in real estate stocks[J]. Journal of Property Research, 2018, 35: 271-295.
|
31 |
Patton A J. A review of copula models for economic time series[J]. Journal of Multivariate Analysis, 2012, 110: 4-18.
|