中国管理科学 ›› 2024, Vol. 32 ›› Issue (8): 1-14.doi: 10.16381/j.cnki.issn1003-207x.2021.1654
• • 下一篇
收稿日期:
2021-08-20
修回日期:
2021-11-05
出版日期:
2024-08-25
发布日期:
2024-08-29
通讯作者:
吴鑫育
E-mail:xywu.aufe@gmail.com
基金资助:
Xinyu Wu1(),Haibin Xie2,Chaoqun Ma3
Received:
2021-08-20
Revised:
2021-11-05
Online:
2024-08-25
Published:
2024-08-29
Contact:
Xinyu Wu
E-mail:xywu.aufe@gmail.com
摘要:
本文在经典的基于极差的条件自回归极差(CARR)模型基础上,借鉴基于收益率的GARCH-MIDAS模型的建模思路,提出基于极差的CARR-MIDAS模型对人民币汇率波动率进行建模。该模型框架充分利用了日内极值信息,且允许低频宏观经济变量(宏观经济信息)通过波动率长期成分和灵活的MIDAS结构直接影响波动率。采用月度全球经济政策不确定性(EPU)指数和日度美元兑人民币(USD/CNY)汇率数据,利用引入EPU的基于极差的CARR-MIDAS(CARR-MIDAS-EPU)模型,实证检验了EPU对USD/CNY汇率波动率的影响及预测作用。实证结果表明:EPU对USD/CNY汇率长期波动率具有显著正向影响,即EPU水平的提高会加剧USD/CNY汇率长期波动率;基于极差的CARR-MIDAS-EPU模型相比其他众多竞争模型(包括基于收益率的GARCH模型、GARCH-MIDAS模型和GARCH-MIDAS-EPU模型以及基于极差的CARR模型和CARR-MIDAS模型)在不同的预测期上(从1天到3个月)具有显著更高的样本外波动率预测精确性,说明极差和EPU包含了USD/CNY汇率波动率预测的重要信息。采用不同版本的全球EPU指数和不同的样本外预测窗口进行稳健性分析,进一步证实了上述研究结论的可靠性。
中图分类号:
吴鑫育,谢海滨,马超群. 经济政策不确定性与人民币汇率波动率[J]. 中国管理科学, 2024, 32(8): 1-14.
Xinyu Wu,Haibin Xie,Chaoqun Ma. Economic Policy Uncertainty and Renminbi Exchange Rate Volatility: Evidence from CARR-MIDAS Model[J]. Chinese Journal of Management Science, 2024, 32(8): 1-14.
表2
参数估计结果"
参数 | GARCH | GARCH-MIDAS | GARCH-MIDAS-EPU | CARR | CARR-MIDAS | CARR-MIDAS-EPU |
---|---|---|---|---|---|---|
0.0000 | -2.8243 | -4.3901 | 0.0000 | -2.3273 | -4.0099 | |
(0.0000) | (0.0273) | (0.0205) | (0.0000) | (0.0303) | (0.0458) | |
0.9782 | 0.9314 | 0.4260 | 0.3712 | |||
(0.0037) | (0.0042) | (0.0041) | (0.0052) | |||
0.2167 | 0.2212 | |||||
(0.0061) | (0.0097) | |||||
19.8509 | 21.4141 | 14.3215 | 15.9958 | |||
(0.0804) | (0.1106) | (0.1859) | (0.3368) | |||
19.8770 | 46.2300 | |||||
(0.2607) | (1.8430) | |||||
0.0852 | 0.2580 | 0.2570 | 0.2925 | 0.3986 | 0.3993 | |
(0.0027) | (0.0094) | (0.0110) | (0.0114) | (0.0131) | (0.0118) | |
0.9146 | 0.5367 | 0.5358 | 0.6693 | 0.3732 | 0.3700 | |
(0.0017) | (0.0133) | (0.0141) | (0.0120) | (0.0160) | (0.0157) | |
Log-lik | 19555.9521 | 19635.0329 | 19637.0862 | 22397.4605 | 22433.5876 | 22435.2379 |
表3
波动率预测评价结果"
预测期 | GARCH | GARCH-MIDAS | GARCH-MIDAS-EPU | CARR | CARR-MIDAS | CARR-MIDAS-EPU |
---|---|---|---|---|---|---|
MSE | ||||||
1d | 1.8812E-06 | 1.7453E-06 | 1.8053E-06 | 1.0439E-06 | 1.0093E-06 | 1.0034E-06 |
1w | 2.2375E-06 | 2.0410E-06 | 2.1601E-06 | 1.3601E-06 | 1.2960E-06 | 1.2722E-06 |
2w | 2.4510E-06 | 2.2005E-06 | 2.3525E-06 | 1.6051E-06 | 1.4187E-06 | 1.3825E-06 |
1m | 2.9237E-06 | 2.3547E-06 | 2.5333E-06 | 2.0200E-06 | 1.4101E-06 | 1.3620E-06 |
2m | 4.3222E-06 | 2.3981E-06 | 2.5451E-06 | 2.4252E-06 | 1.3914E-06 | 1.3427E-06 |
3m | 5.5743E-06 | 2.3478E-06 | 2.5311E-06 | 2.5807E-06 | 1.3872E-06 | 1.3465E-06 |
QLIKE | ||||||
1d | -5.1629 | -5.1734 | -5.1679 | -5.2063 | -5.2171 | -5.2189 |
1w | -5.1440 | -5.1453 | -5.1383 | -5.1510 | -5.1880 | -5.1927 |
2w | -5.1362 | -5.1361 | -5.1282 | -5.1023 | -5.1727 | -5.1801 |
1m | -5.1270 | -5.1352 | -5.1261 | -4.9900 | -5.1789 | -5.1887 |
2m | -5.0712 | -5.1370 | -5.1294 | -4.8115 | -5.1864 | -5.1965 |
3m | -5.0353 | -5.1400 | -5.1314 | -4.7389 | -5.1904 | -5.1989 |
表4
MCS检验结果"
预测期 | GARCH | GARCH-MIDAS | GARCH-MIDAS-EPU | CARR | CARR-MIDAS | CARR-MIDAS-EPU |
---|---|---|---|---|---|---|
MSE | ||||||
1d | 0.0000 | 0.0000 | 0.0000 | 0.0835 | 0.1609 | 1.0000 |
1w | 0.0000 | 0.0000 | 0.0000 | 0.0871 | 0.0871 | 1.0000 |
2w | 0.0000 | 0.0000 | 0.0000 | 0.0003 | 0.0114 | 1.0000 |
1m | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0014 | 1.0000 |
2m | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0045 | 1.0000 |
3m | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0181 | 1.0000 |
QLIKE | ||||||
1d | 0.0000 | 0.0000 | 0.0000 | 0.0019 | 0.0160 | 1.0000 |
1w | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0117 | 1.0000 |
2w | 0.0010 | 0.0003 | 0.0000 | 0.0000 | 0.0015 | 1.0000 |
1m | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0003 | 1.0000 |
2m | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0008 | 1.0000 |
3m | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0045 | 1.0000 |
表5
MCS检验结果(基于PPP调整后的GDP测度的全球EPU指数)"
预测期 | GARCH | GARCH-MIDAS | GARCH-MIDAS-EPU | CARR | CARR-MIDAS | CARR-MIDAS-EPU |
---|---|---|---|---|---|---|
MSE | ||||||
1d | 0.0000 | 0.0000 | 0.0000 | 0.0159 | 0.0189 | 1.0000 |
1w | 0.0000 | 0.0000 | 0.0000 | 0.0009 | 0.0009 | 1.0000 |
2w | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 |
1m | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 |
2m | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 |
3m | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0001 | 1.0000 |
QLIKE | ||||||
1d | 0.0000 | 0.0000 | 0.0000 | 0.0002 | 0.0021 | 1.0000 |
1w | 0.0001 | 0.0005 | 0.0000 | 0.0001 | 0.0006 | 1.0000 |
2w | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 |
1m | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 |
2m | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 |
3m | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 |
表6
MCS检验结果(预测窗口:500)"
预测期 | GARCH | GARCH-MIDAS | GARCH-MIDAS-EPU | CARR | CARR-MIDAS | CARR-MIDAS-EPU |
---|---|---|---|---|---|---|
MSE | ||||||
1d | 0.0000 | 0.0000 | 0.0000 | 0.2155 | 0.7787 | 1.0000 |
1w | 0.0000 | 0.0000 | 0.0000 | 0.0433 | 0.6423 | 1.0000 |
2w | 0.0000 | 0.0000 | 0.0000 | 0.0003 | 0.5610 | 1.0000 |
1m | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.2191 | 1.0000 |
2m | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.1615 | 1.0000 |
3m | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.1066 | 1.0000 |
QLIKE | ||||||
1d | 0.0000 | 0.0000 | 0.0000 | 0.0206 | 0.1426 | 1.0000 |
1w | 0.0000 | 0.0000 | 0.0000 | 0.0015 | 0.2868 | 1.0000 |
2w | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.1765 | 1.0000 |
1m | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0585 | 1.0000 |
2m | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0339 | 1.0000 |
3m | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0272 | 1.0000 |
表7
MCS检验结果(预测窗口:1000)"
预测期 | GARCH | GARCH-MIDAS | GARCH-MIDAS-EPU | CARR | CARR-MIDAS | CARR-MIDAS-EPU |
---|---|---|---|---|---|---|
MSE | ||||||
1d | 0.0000 | 0.0000 | 0.0000 | 0.0128 | 0.0128 | 1.0000 |
1w | 0.0000 | 0.0000 | 0.0000 | 0.0004 | 0.0004 | 1.0000 |
2w | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 |
1m | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 |
2m | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 |
3m | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 |
QLIKE | ||||||
1d | 0.0000 | 0.0000 | 0.0000 | 0.0003 | 0.0011 | 1.0000 |
1w | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 |
2w | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 |
1m | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 |
2m | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 |
3m | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 |
1 | Bollerslev T. Genearlized autoregressive conditional heteroskedasticity[J]. Journal of Econometrics, 1986, 31(3): 307-327. |
2 | Parkinson M. The extreme value method for estimating the variance of the rate of return[J]. Journal of Business, 1980, 53(1): 61-65. |
3 | Alizadeh S, Brandt M W, Diebold F X. Range-based estimation of stochastic volatility models[J]. Journal of Finance, 2002, 57(3): 1047-1091. |
4 | Brandt M, Jones C. Volatility forecasting with range-based EGARCH models[J]. Journal of Business & Economic Statistics, 2006, 24(4): 470-486. |
5 | Degiannakis S, Livada A. Realized volatility or price range: Evidence from a discrete simulation of the continuous time diffusion process[J]. Economic Modelling, 2013, 30: 212-216. |
6 | 李红权, 汪寿阳. 基于价格极差的金融波动率建模: 理论与实证分析[J]. 中国管理科学, 2009, 17(6): 1-8. |
Li H Q, Wang S Y. Modeling financial volatilities based on price range: Theoretical research and empirical study[J]. Chinese Journal of Management Science, 2009, 17(6): 1-8. | |
7 | 孙便霞, 王明进. 基于价格极差的GARCH模型[J]. 数理统计与管理, 2013, 32(2): 259-267. |
Sun B X, Wang M J. A new class GARCH model based on price range[J]. Journal of Applied Statistics and Management, 2013, 32(2): 259-267. | |
8 | 郑挺国, 左浩苗. 基于极差的区制转移随机波动率模型及其应用[J]. 管理科学学报, 2013, 16(9): 82-94. |
Zheng T G, Zuo H M. Range based regime switching stochastic volatility models with applications[J]. Journal of Management Sciences in China, 2013, 16(9): 82-94. | |
9 | 刘威仪, 孙便霞, 王明进. 基于日度低频价格的波动率预测[J]. 管理科学学报, 2016, 19(1): 60-71. |
Liu W Y, Sun B X, Wang M J. Volatility forecasting based on daily frequency prices[J]. Journal of Management Sciences in China, 2016, 19(1): 60-71. | |
10 | 刘威仪. 基于半极差模型的高低价预测[J]. 数理统计与管理, 2019, 38(2): 314-325. |
Liu W Y. Forecasting high and low prices based on semi-range models[J]. Journal of Applied Statistics and Management, 2019, 38(2): 314-325. | |
11 | Chou R. Forecasting financial volatilities with extreme values: The conditional autoregressive range (CARR) model[J]. Journal of Money, Credit and Banking, 2005, 37(3): 561-582. |
12 | Chen C W S, Gerlach R, Lin E M H. Volatility forecasting using threshold heteroskedastic models of the intra-day range[J]. Computational Statistics & Data Analysis, 2008, 52(6): 2990-3010. |
13 | Chou R, Liu N. The economic value of volatility timing using a range-based volatility model[J]. Journal of Economic Dynamics and Control, 2010, 34(11): 2288-2301. |
14 | Chiang M H, Wang L M. Volatility contagion: A range-based volatility approach[J]. Journal of Econometrics, 2011, 165(2): 175-189. |
15 | Lin E M H, Chen C W S, Gerlach R. Forecasting volatility with asymmetric smooth transition dynamic range models[J]. International Journal of Forecasting, 2012, 28(2): 384-399. |
16 | Chan J, Ng K, Nitithumbundit T, et al. Efficient estimation of financial risk by regressing the quantiles of parametric distributions: An application to CARR models[J]. Studies in Nonlinear Dynamics & Econometrics, 2019, 23(2): 1-22. |
17 | Chou R, Chou H, Liu N. Range volatility: a review of models and empirical studies[M]//Lee C F, Lee J. Handbook of Financial Econometrics and Statistics. New York: Springer, 2015: 2029-2050. |
18 | Xie H B. Financial volatility modeling: The feedback asymmetric conditional autoregressive range model[J]. Journal of Forecasting, 2019, 38: 11-28. |
19 | Xie H B, Wu X Y. Range-based volatility forecasting: An extended conditional autoregressive range model[J]. Journal of Risk, 2019, 21(3): 55-80. |
20 | 赵树然, 任培民, 赵昕. 基于CARR-EVT整体方法的动态日VaR和CVaR模型研究[J]. 数量经济技术经济研究, 2012(11): 130-148. |
Zhao S R, Ren P M, Zhao X. Modeling daily VaR and CVaR by integrating CARR and EVT models[J]. The Journal of Quantitative & Technical Economics, 2012(11): 130-148. | |
21 | 王沁. 基于杠杆效应CARR模型的波动率预测[J]. 数理统计与管理, 2017, 36(1): 51-58. |
Wang Q. The volatility forecast based on the leverage effect CARR model[J]. Journal of Applied Statistics and Management, 2017, 36(1): 51-58. | |
22 | 王沁. 金融市场间波动溢出效应研究——基于Gumber的二维CARR模型和生存Copula-CARR模型[J]. 数理统计与管理, 2019, 38(3): 535-548. |
Wang Q. Research on the volatility spillover between financial markets: Based on the Gumber's two-dimensional CARR model and the survival Copula-CARR model[J]. Journal of Applied Statistics and Management, 2019, 38(3): 535-548. | |
23 | 鲁万波, 于翠婷, 王敏. 基于非参数条件自回归极差模型的中国股市波动性预测[J]. 数理统计与管理, 2018, 37(3): 544-553. |
Lu W B, Yu C T, Wang M. Forecasting volatility of Chinese stock market with nonparametric conditional autoregressive range model[J]. Journal of Applied Statistics and Management, 2018, 37(3): 544-553. | |
24 | Baker S R, Bloom N, Davis S J. Measuring economic policy uncertainty[J]. Quarterly Journal of Economics, 2016, 131(4): 1593-1636. |
25 | 杨子晖, 陈雨恬, 陈里璇. 极端金融风险的有效测度与非线性传染[J]. 经济研究, 2019, 54(5): 63-80. |
Yang Z H, Chen Y T, Chen L X. Effective measurement and nonlinear contagion of extreme financial risk[J]. Economic Research Journal, 2019, 54(5): 63-80. | |
26 | 杨子晖, 陈里璇, 陈雨恬. 经济政策不确定性与系统性金融风险的跨市场传染——基于非线性网络关联的研究[J]. 经济研究, 2020, 55(1): 65-81. |
Yang Z H, Chen L X, Chen Y T. Cross-market contagion of economic policy uncertainty and systemic financial risk: A nonlinear network connectedness analysis[J]. Economic Research Journal, 2020, 55(1): 65-81. | |
27 | 张喜艳, 陈乐一. 经济政策不确定性的溢出效应及形成机理研究[J]. 统计研究, 2019, 36(1): 115-128. |
Zhang X Y, Chen L Y. A study on the spillover effect and its formation mechanism of economic policy uncertainty[J].Statistical Research, 2019,36(1): 115-128. | |
28 | 王正新, 姚培毅. 中国经济政策不确定性的跨国动态溢出效应[J]. 中国管理科学, 2019, 27(5): 78-85. |
Wang Z X, Yao P Y. Dynamic spillovers effects of economic policy uncertainty of China[J]. Chinese Journal of Management Science, 2019, 27(5): 78-85. | |
29 | 胡成春, 陈迅. 经济政策不确定性、宏观经济与资产价格波动——基于TVAR模型及溢出指数的实证分析[J]. 中国管理科学, 2020, 28(11): 61-70. |
Hu C C, Chen X. Economic policy uncertainty, macroeconomic and asset price fluctuation: Based on TVAR model and spillover index[J]. Chinese Journal of Management Science, 2020, 28(11): 61-70. | |
30 | 李政, 孙丽玲, 王子美. 基于关联网络的经济政策不确定性全球溢出效应研究[J]. 国际金融研究, 2020(4): 54-64. |
Li Z, Sun L L, Wang Z M. A study on global spillover effect of economic policy uncertainty from the perspective of network[J]. Studies of International Finance, 2020(4): 54-64. | |
31 | 张宗新, 林弘毅, 李欣越. 经济政策不确定性如何影响金融市场间的流动性协同运动?——基于中国金融周期的视角[J]. 统计研究, 2020, 37(2): 37-51. |
Zhang Z X, Lin H Y, Li X Y. How economic policy uncertainty affects liquidity co-movements among financial markets—From the perspective of China's financial cycle[J]. Statistical Research, 2020, 37(2): 37-51. | |
32 | 钟婉玲, 李海奇. 国际油价、宏观经济变量与中国股市的尾部风险溢出效应研究[J]. 中国管理科学,2022,30(2): 27-37. |
Zhong W L, Li H Q. Tail risk spillover effects among crude oil price, macroeconomic variables and China's stock market[J]. Chinese Journal of Management Science, 2022,30(2): 27-37. | |
33 | Bartsch Z. Economic policy uncertainty and dollar-pound exchange rate return volatility[J]. Journal of International Money and Finance, 2019, 98: 102067. |
34 | Engle R F, Ghysels E, Sohn B. Stock market volatility and macroeconomic fundamentals[J]. Review of Economics and Statistics, 2013, 95(3): 776-797. |
35 | Ghysels E, Sinko A, Valkanov R. MIDAS regressions: Further results and new directions[J]. Econometric Reviews, 2007, 26: 53-90. |
36 | Asgharian H, Hou A J, Javed F. The importance of the macroeconomic variables in forecasting stock return variance: A GARCH-MIDAS approach[J]. Journal of Forecasting, 2013, 32: 600-612. |
37 | Conrad C, Loch K. Anticipating long-term stock market volatility[J]. Journal of Applied Econometrics, 2015, 30: 1090-1114. |
38 | Wang F, Ghysels E. Econometric analysis of volatility component models[J]. Econometric Theory, 2015, 31: 362-393. |
39 | Conrad C, Kleen O. Two are better than one: Volatility forecasting using multiplicative component GARCH-MIDAS models[J]. Journal of Applied Econometrics, 2020, 35(1): 19-45. |
40 | You Y, Liu X C. Forecasting short-run exchange rate volatility with monetary fundamentals: A GARCH-MIDAS approach[J]. Journal of Banking and Finance, 2020, 116: 105849. |
41 | 郑挺国, 尚玉皇. 基于宏观基本面的股市波动度量与预测[J]. 世界经济, 2014, 37(12): 118-139. |
Zheng T G, Shang Y H. Measuring and forecasting stock market volatility with macro fundamentals[J]. The Journal of World Economy,2014,37(12): 118-139. | |
42 | 苏治, 方彤, 马景义. 一类包含不同权重函数的混频GARCH族模型及其应用研究[J]. 数量经济技术经济研究, 2018, 35(10): 126-143. |
Su Z, Fang T, Ma J Y. A kind of GARCH-MIDAS model with different weighting functions and their application research[J]. The Journal of Quantitative & Technical Economics, 2018, 35(10): 126-143. | |
43 | 刘凤根, 吴军传, 杨希特, 等. 基于混频数据模型的宏观经济对股票市场波动的长期动态影响研究[J]. 中国管理科学, 2020, 28(10): 65-76. |
Liu F G, Wu J C, Yang X T, et al. Long-run dynamic effect of macro-economy on stock market volatility based on mixed frequency data model[J]. Chinese Journal of Management Science, 2020, 28(10): 65-76. | |
44 | 梁超, 魏宇, 马锋, 等. 投资者关注对中国黄金价格波动率的影响研究[J]. 系统工程理论与实践, 2022, 42(2): 320-332. |
Liang C, Wei Y, Ma F, et al. A study on the impact of investor attention on Chinese gold volatility[J]. Systems Engineering - Theory & Practice, 2022, 42(2): 320-332. | |
45 | Li T, Ma F, Zhang X, et al. Economic policy uncertainty and the Chinese stock market volatility: Novel evidence[J]. Economic Modelling, 2020, 87: 24-33. |
46 | Wang X, Luo Y, Wang Z, et al. The impact of economic policy uncertainty on volatility of China's financial stocks: An empirical analysis[J]. Finance Research Letters, 2021, 39: 101650. |
47 | 雷立坤, 余江, 魏宇, 等. 经济政策不确定性与我国股市波动率预测研究[J]. 管理科学学报, 2018, 21(6): 88-98. |
Lei L K, Yu J, Wei Y, et al. Forecasting volatility of Chinese stock market with economic policy uncertainty[J]. Journal of Management Sciences in China, 2018, 21(6): 88-98. | |
48 | 夏婷, 闻岳春. 经济不确定性是股市波动的因子吗?——基于GARCH-MIDAS模型的分析[J]. 中国管理科学, 2018, 26(12): 1-11. |
Xia T, Wen Y C. Does economic uncertainty matter for stock market volatility?An analysis based on GARCH-MIDAS[J]. Chinese Journal of Management Science, 2018, 26(12): 1-11. | |
49 | 张一锋, 雷立坤, 魏宇. 羊群效应的新测度指数及其对我国股市波动的预测作用研究[J]. 系统工程理论与实践, 2020, 40(11): 2810-2824. |
Zhang Y F, Lei L K, Wei Y. A new herd index and volatility forecasting of China's stock market[J]. Systems Engineering - Theory & Practice, 2020, 40(11): 2810-2824. | |
50 | Zhou Z B, Fu Z Y, Jiang Y, et al. Can economic policy uncertainty predict exchange rate volatility? New evidence from the GARCH-MIDAS model[J]. Finance Research Letters, 2020, 34: 101258. |
51 | 操玮, 崔陈, 朱卫东. 多来源经济不确定性对人民币汇率波动的影响研究——基于多因子GARCH-MIDAS模型的分析[J].金融理论与实践, 2021(7): 59-69. |
Cao W, Cui C, Zhu W D. Study on the impact of multi-source economic uncertainty on Renminbi exchange rate volatility: Empirical evidence from multi-factor GARCH-MIDAS model[J]. Financial Theory & Practice, 2021(7): 59-69. | |
52 | Chen L M, Du Z Q, Hu Z H. Impact of economic policy uncertainty on exchange rate volatility of China[J]. Finance Research Letters, 2020, 32: 101266. |
53 | Wang P P, Li Y S, Wu S X. Time-varying effects of U.S. economic policy uncertainty on exchange rate return and volatility in China[J]. Emerging Markets Finance and Trade, 2022, 58(7): 1807-1820. |
54 | 黄乃静, 汪寿阳. 中欧货币汇率的极端风险传播研究[J]. 管理科学学报, 2018, 21(12): 1-17. |
Huang N J, Wang S Y. The extreme risk spillover between european currencies and chinese renminbi[J]. Journal of Management Sciences in China, 2018, 21(12): 1-17. | |
55 | 朱孟楠, 闫帅. 经济政策不确定性与人民币汇率的动态溢出效应[J]. 国际贸易问题, 2015(10): 111-119. |
Zhu M N, Yan S. Dynamic spillovers of economic policy uncertainty and RMB exchange rate[J]. Journal of International Trade, 2015(10): 111-119. | |
56 | Engle R, Rangel J. The spline-GARCH model for low-frequency volatility and its global macroeconomic causes[J]. Review of Financial Studies, 2008, 21(3): 1187-1222. |
57 | Diebold F X. Modelling the persistence of conditional variance: A comment[J]. Econometric Reviews, 1986(5): 51-56. |
58 | Lamoureux C G, Lastrapes W D. Persistence in variance, structural change and the GARCH model[J]. Journal of Business & Economic Statistics, 1990,8(2): 225-234. |
59 | Wu X Y, Hou X M. Forecasting volatility with component conditional autoregressive range model[J]. North American Journal of Economics and Finance, 2020, 51: 101078. |
60 | Dominicy Y, Elst H V. Macro-driven VaR forecasts: From very high to very low-frequency data[R]. Working Paper, Universite libre de Bruxelles, 2015. |
61 | Patton A. Volatility forecast comparison using imperfect volatility proxies[J]. Journal of Econometrics, 2011, 160(1): 246-256. |
62 | Hansen P R, Lunde A, Nason J M. The model confidence set[J]. Econometrica, 2011, 79(2): 453-497. |
63 | Asgharian H, Christiansen C, Hou A J. Macro-finance determinants of the long-run stock-bond correlation: The DCC-MIDAS specification[J]. Journal of Financial Econometrics, 2016, 14: 617-642. |
[1] | 吴鑫育,姜晓晴,李心丹,马超群. 基于已实现EGARCH-FHS模型的上证50ETF期权定价研究[J]. 中国管理科学, 2024, 32(3): 105-115. |
[2] | 吴鑫育,谢海滨,马超群. 得分驱动乘性成分已实现CARR模型及其实证研究[J]. 中国管理科学, 2023, 31(8): 214-225. |
[3] | 宫晓莉, 刘建民, 熊熊, 张维. 经济政策不确定性与国际金融网络间的尾部风险传染研究[J]. 中国管理科学, 2023, 31(7): 78-90. |
[4] | 钟婉玲, 李海奇. 国际油价、宏观经济变量与中国股市的尾部风险溢出效应研究[J]. 中国管理科学, 2022, 30(2): 27-37. |
[5] | 胡成春, 陈迅. 经济政策不确定性、宏观经济与资产价格波动——基于TVAR模型及溢出指数的实证分析[J]. 中国管理科学, 2020, 28(11): 61-70. |
[6] | 王正新, 姚培毅. 中国经济政策不确定性的跨国动态溢出效应[J]. 中国管理科学, 2019, 27(5): 78-85. |
[7] | 夏婷, 闻岳春. 经济不确定性是股市波动的因子吗?——基于GARCH-MIDAS模型的分析[J]. 中国管理科学, 2018, 26(12): 1-11. |
[8] | 彭红枫, 陈奕. 中国铜期货市场最优套期保值比率估计——基于马尔科夫区制转移GARCH模型[J]. 中国管理科学, 2015, 23(5): 14-22. |
[9] | 刘维奇, 邢红卫, 张信东. 投资偏好与“特质波动率之谜”——以中国股票市场A股为研究对象[J]. 中国管理科学, 2014, 22(8): 10-20. |
[10] | 李红权, 汪寿阳. 基于价格极差的金融波动率建模: 理论与实证分析[J]. 中国管理科学, 2009, 17(6): 1-8. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|