主管:中国科学院
主办:中国优选法统筹法与经济数学研究会
   中国科学院科技战略咨询研究院
论文

拟凹生产函数的分区域估计

展开
  • 1. 内蒙古工业大学管理学院, 内蒙古 呼和浩特 010051;
    2. 内蒙古大学经济管理学院, 内蒙古 呼和浩特 010021
董进全(1963-),男(汉族),内蒙古人,内蒙古工业大学管理学院,教授,博士,研究方向:最优化及其应用.

收稿日期: 2013-03-23

  修回日期: 2013-07-27

  网络出版日期: 2015-03-18

基金资助

国家自然科学基金资助项目(71261017,70961005,71262020)

Estimation of Quasi-concave Production Function Based on the Division of Input Possibility Set

Expand
  • 1. School of Management, Inner Mongolia University of Technology, Hohhot 010051, China;
    2. School of Management, Inner Mongolia University, Hohhot 010021, China

Received date: 2013-03-23

  Revised date: 2013-07-27

  Online published: 2015-03-18

摘要

本文提出了规模报酬递增生产前沿面的概念并证明了以下两个结论:(1)基于样本数据的DEA生产投入集可划分为规模报酬递增、不变和递减区域;(2)C-D生产函数是拟凹函数,且在规模报酬递增区域非凹,在规模递减区域严格凹。基于上述结论及对生产函数曲面,BCC生产前沿面,规模报酬递增生产前沿面的相互关系的分析,提出了一种生产函数分区域估计方法:在对样本数据(决策单元)依据规模报酬增减性进行分类的基础上进行投入可能集的分划,进而在规模报酬递减(不变)和递增区域上分别通过决策单元的BCC弱有效投影和规模报酬递增弱有效投影估计生产函数。文末,通过实例验证了估计方法的有效性。

本文引用格式

董进全, 邱程程, 马占新, 刘俊华, 郑治华 . 拟凹生产函数的分区域估计[J]. 中国管理科学, 2015 , 23(3) : 32 -41 . DOI: 10.16381/j.cnki.issn1003-207x.2015.03.004

Abstract

It is proved that,firstly, the input possibility set spanned by samples (DMUs in terms of DEA) can be divided into areas of increasing return to scale (IRS), constant return to scale (CRS) and decreasing return to scale (DRS); secondly, C-D production function is quasi-concave, and non-concave on the area of IRS. The concept of IRS frontier of a production possibility set is proposed. Based on the division of input possibility set and the position of the production function surface, BCC frontier and the IRS frontier, a method to estimate production function is proposed. According to the method, production function is divided into a non-concave segments on area of IRS and a concave segment on area of non-IRS, and the estimation is processed in following steps. First, dividing the input possibility set into IRS area and non-IRS area; second, forming IRS frontier on IRS area and BCC frontier on non-IRS area, respectively; third, estimating parameters of each segment with corresponding frontier by a linear programming model, respectively. The validity of the estimation method is verified through an instance.

参考文献

[1] Aigner D J, Chu S F. On estimating the industry production function[J]. American Economic Review, 1968, 58(4):826-839.

[2] Zhao N, Tang Huanwen, Luo Xiaona. Research on non-linear input-output model based on production function theory and a new method to update IO coefficients matrix[J]. Applied Mathematics and Computation, 2006, 181(1):478-486.

[3] 哈尔,范里安.微观经济学:现代观点(第六版) [M].上海:上海人民出版社,2006.

[4] 魏权龄,胡显佑,肖志杰. DEA方法与前沿生产函数[J].经济数学,1988,5(5): 1-13.

[5] 杨锋,梁樑,凌六一,等.供应链前沿生产函数的DEA估计研究[J].中国管理科学, 2008,16(5): 90-95.

[6] Deprins D, Simar L, Tulkens H. Measuring labour efficiency in post offices[M]//Tulkens H,Chander P. The performance of public enterprises. Amsterdam: North -Holland, 1984:243-267.

[7] 吴文江,吴文辉.在用DEA的基础上确定生产函数的方法[J].武汉工业大学学报, 1997, 19(3):154-155.

[8] 程大友.基于DEA模型估计前沿生产函数的探讨[J].技术经济与管理研究, 2004,(4): 51-52.

[9] 马赞甫,刘妍珺. 基于DEA的生产函数估计[J].管理学报,2010, 7(8): 1237-1241.

[10] 魏权龄.数据包络分析[M].北京:科学出版社,2004.

[11] Yu Gang, Wei Quanling, Patrick Brockett, et al. Construction of all DEA efficient surfaces of the production possibility set under the Generalized Data Envelopment Analysis Model [J]. European Journal of Operational Research, 1996, 95(3): 491-510.

[12] 蒋中一.数理经济学的基本方法[M].北京:北京大学出版社,2006.

[13] 王祖祥.经济理论中C-D函数的有关性质[J].数量经济技术经济研究, 2000, 17(6): 63-65.

[14] Dekker D, Post T. A quasi-concave DEA model with an application for bank branch performance evaluation [J]. European Journal of Operational Research, 2001,132(2): 296-311.

[15] Post T. Transconcave data envelopment analysis [J]. European Journal of Operational Research, 2001, 132(2): 326-339.

[16] 王晓红,王雪峰,翟爱梅,等.具有边际报酬递增特性的数据包络分析模型[J].上海交通大学大学学报,2005, 39(3): 484-487.

[17] 王晓红,王雪峰,翟爱梅,等.具有边际报酬递增特性的DEA模型求解方法[J].哈尔滨工业大学学报,2004, 36(10): 1297-1300.

[18] 邱兆祥,张爱武.基于FDH方法的中国商业银行X-效率研究[J].金融研究, 2009,(11): 91-102.

[19] 赵历男,赵亚男.技术进步与规模报酬的测量模型与实证分析[J].数量经济技术经济研究,1994,(8):43-47.

[20] 申树斌,纪凤兰.夏少刚.规模报酬的数学表述方法研究[J].东北财经大学学报,2005,(3):73-76.

[21] 周长春.规模报酬变动的衡量指标[J].统计与决策,2007,(19):70-71

[22] Banker R D. Estimating most productive scale size using data envelopment analysis[J]. European Journal of Operational Research, 1984,17(1): 35-44.

[23] Fare R, Grosskopf S. A nonparametric cost approach to scale efficiency [J].The Scandinavian Journal of Economics, 1985, 87(4):594-604.

[24] 魏权龄,马赞甫,阎洪.DEA的交形式生产可能集及其应用[J].数学的实践与认识,2007, 37(4): 62-69.

[25] Wei Quanling, Yu Gang, Lu Jianshou. The necessary and sufficient conditions for returns to scale properties in generalized data envelopment analysis model [J]. Science in China (Series E), 2002, 45(5): 503-515.

[26] 谢守祥,慕晶敏. 基于时间参数DEA的江苏省工业生产函数测算[J].决策参考, 2007, (19): 52-56.

[27] 孙莹,鲍新中,刘小军.基于生产函数和数据包络方法的企业规模效益分析[J].产业经济研究,2011,(1):56-63.
文章导航

/