主管:中国科学院
主办:中国优选法统筹法与经济数学研究会
   中国科学院科技战略咨询研究院
论文

国家风险动态性的多尺度特征提取与识别:以OPEC国家为例

展开
  • 1. 中国科学院科技政策与管理科学研究所, 北京 100190;
    2. 中国科学院大学, 北京 100049
孙晓蕾(1981-), 女(汉族), 山东烟台人, 中国科学院科技政策与管理科学研究所副研究员, 研究方向:风险管理与能源经济.

收稿日期: 2014-01-06

  修回日期: 2014-12-23

  网络出版日期: 2015-04-24

基金资助

国家自然科学基金资助项目(71003091,71373009,71133005);中国科学院青年创新促进会项目

Multi-scale Feature Extraction and Identification of Country Risk Dynamics:Cases of OPEC Countries

Expand
  • 1. Institute of Policy and Management, Chinese Academy of Sciences, Beijing 100190, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2014-01-06

  Revised date: 2014-12-23

  Online published: 2015-04-24

摘要

国家风险是经济活动主体在国际业务中所面临的来自其他国家的风险, 深入研究其内在特征, 对于理解和把握国家风险的动态演化规律有着重要意义。鉴于国家风险复杂易变的特点, 本文提出了一种基于"分解重构"思想的多尺度特征提取与识别的研究框架, 利用Ensemble EMD方法将原始国家风险值分解到短期、中期和长期三个时间尺度上, 引入方差贡献率、相关系数和Shapley值刻画各尺度与原始国家风险序列间的波动特征、模态特征以及全局重要度。以12个OPEC石油输出国为样本, 实证结果发现:利用各尺度的模态特征和波动特征可以很好地实现样本国国家风险的分类管理, 且分类具有较好的一致性;由Shapley值获得不同尺度的全局重要度, 对于全部样本国呈现出一致且稳定的内在固有特征, 即短期、中期和长期三尺度对国家风险的"贡献度"约为1:1:3。这不仅能够为国家风险管理提供了更为丰富的动态特征信息, 而且对于更为全面的国家风险特征识别、监测与预测提供了一种新的研究方法。

本文引用格式

孙晓蕾, 姚晓阳, 杨玉英, 吴登生, 李建平 . 国家风险动态性的多尺度特征提取与识别:以OPEC国家为例[J]. 中国管理科学, 2015 , 23(4) : 1 -10 . DOI: 10.16381/j.cnki.issn1003-207x.2015.04.001

Abstract

Country risk is one kind of special risk which comes from other countries when taking part in international activities, and it is of great importance to understand the law of its dynamic features. In this paper, considering the complexity and mutability of country risk, a novel research framework which concentrates on multi-scale feature extraction and identification is proposed based on the thought of "decomposition and integration". Firstly, country risk data is decomposed to several intrinsic mode functions. Then these intrinsic mode functions are reconstructed to three components of different scales, which represent high frequency scale, low frequency scale and trend respectively. Furthermore, variance contribution rate, correlation coefficient and the Shapley value are introduced to depict features of dynamic fluctuation, correlations between different scales and original data and the global importance of different scales respectively. At last, empirical experiments are given by selecting OPEC countries as cases. It can be found that modes correlation and variance contribution features can effectively classify the sample countries, and the classified results using the two different features have consistency.The global importance of high frequency scale, low frequency scale and the trend is 1:1:3, that is, global importance, which can be obtained by the Shapley value, is coherence and stable between all the countries. Above all, the framework can not only offer more dynamic information of the country risk, but also can be regarded as a new method for the comprehensive identification, monitory and prediction to the country risk.

参考文献

[1] Coplin W D, O'Leary M K. The handbook of country and political risk analysis[C]//Proceedings of International Bussiness Communications, New York:Political Risk Services, 1994.

[2] Bouchet E C, Groslambert B, Groslambert B. Country risk assessment:A guide to global investment strategy[M]. New York:John Wiley & Sons, 2003.

[3] Cantor R, Packer P. Determinants and impact of sovereign credit ratings[J]. Economic Policy Review, 1996, 2(2):37-54.

[4] 李福胜.国家风险分析·评估·监控[M]. 北京:社会科学文献出版社, 2006.

[5] 汤铃, 李建平, 孙晓蕾, 等.基于模态分解的国家风险多尺度特征分析[J]. 管理评论, 2012, 24(8):3-10.

[6] Li Jianping, Tang Ling, Sun Xiaolei, et al.Country risk forecasting for major oil exporting countries:A decomposition hybrid approach[J]. Computers & Industrial Engineering, 2012, 63(3):641-651

[7] 李建平, 孙晓蕾, 范英, 等.国家风险评级的问题分析与战略思考[J].中国科学院院刊, 2011, 26(3):245-251.

[8] 寇刚, 娄春伟, 彭怡, 等.基于时序多目标方法的主权信用违约风险研究[J].管理科学学报, 2012, 15(4):81-87.

[9] Agliardi E, Agliardi R, Pinar M, et al. A new country risk index for emerging markets:A stochastic dominance approach[J]. Journal of Empirical Finance, 2012, 19(5):741-761.

[10] Saini K G, Bates P S.A survey of the quantitative approaches to country risk anlysis [J]. Journal of Banking and Finance, 1984, 8(2):341-356.

[11] Yim J, Mitchell H.Comparison of country risk models:Hybrid neural networks, logit models, discriminant analysis and cluster techniques [J] Expert Systems with Applications, 2005, 28(1):137-148.

[12] Hammer P L, Kogan A, Lejeune M A.Modeling country risk ratings using partial orders [J].European Journal of Operational Research, 2006, 175(2):836-859.

[13] Van Gestel T, Baesens B, Van Dijcke P, et al.A process model to develop an internal rating system:Sovereign credit ratings [J].Decision Support Systems, 2006, 42(2):1131-1151.

[14] De Gooijer J G, Hyndman R J. 25 years of time series forecasting[J]. International journal of forecasting, 2006, 22(3):443-473.

[15] Hoti S, McAleer M, Shareef R. Modelling international tourism and country risk spillovers for Cyprus and Malta[J]. Tourism Management, 2007, 28(6):1472-1484.

[16] Sun Xiaolei, Li Jianping, Tang Ling, et al. Identifying the risk-return tradeoff and exploring the dynamic risk exposure of country portfolio of the FSU's oil economies. Economic Modelling, 2012, 9(6):2494-2503.

[17] Liu Tengdong, Hammoudeh S, Thompson M A. A momentum threshold model of stock prices and country risk ratings:Evidence from BRICS countries[J]. Journal of International Financial Markets, Institutions and Money, 2013, 27:99-112.

[18] Hammoudeh S, Sari R, Uzunkaya M, et al. The dynamics of BRICS's country risk ratings and domestic stock markets, U.S. stock market and oil price[J]. Mathematics and Computers in Simulation, 2013, 94:277-294.

[19] Fischer G W. Convergent validation of decomposed multi-attribute utility assessment procedures for risky and riskless decisions[J]. Organizational Behavior and Human Performance, 1997, 18(2):295-315.

[20] Kleinmuntz D. Decomposition and the control of error in decision-analytic models[M]//Einhorn H J, Robin M. Insights in decision making. Chicago:University of Chicago Press, 1990:107-126.

[21] Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society of London. Series A:Mathematical, Physical and Engineering Sciences, 1998, 454(1971):903-995.

[22] Zhang Xun, Lai K K, Wang Shouyong. A new approach for crude oil price analysis based on Empirical Mode Decomposition[J]. Energy economics, 2008, 30(3):905-918.

[23] 阮连法, 包洪洁. 基于经验模态分解的房价周期波动实证分析[J]. 中国管理科学, 2012, 20(3):41-46.

[24] 秦宇. 应用经验模态分解的上海股票市场价格趋势分解及周期性分析 [J]. 中国管理科学, 2008, 16(S1):219-225..

[25] Grabisch M, Orlovski S A, Yager R R. Fuzzy sets in decision analysis, operations research and statistics[M]. US:Springer, 1998.

[26] Wu Zhaohua, Huang N E. Ensemble empirical mode decomposition:A noise-assisted data analysis method[J]. Advances in Adaptive Data Analysis, 2009, 1(01):1-41.

[27] Kuncheva L I, Bezdek J C, Duin R P W. Decision templates for multiple classifier fusion:An experimental comparison[J]. Pattern Recognition, 2001, 34(2):299-314.

[28] Grabisch M. The representation of importance and interaction of features by fuzzy measures[J]. Pattern Recognition Letters, 1996, 17(6):567-575.

[29] Grabisch M. The application of fuzzy integrals in multicriteria decision making[J]. European journal of operational research, 1996, 89(3):445-456.
文章导航

/