随着农村土地有偿流转, 农民专业合作社、农业企业等各农村经济实体拥有大规模的土地, 为实现农产品规模化生产和集约化经营, 各农村经济实体需要根据土地资源、农业信息、生产技术制定农产品生产计划。鉴于此, 本文主要针对农产品生产计划决策问题先后建立网络、线性和非线性模型。首先根据农产品生产的时空特性和农产品生产时间柔性引入网络流规划构建网络模型;通过网络流量平衡分析, 推导网络模型应满足的约束条件, 结合各农产品的定量化控制, 对大规模农产品生产网络模型进行线性优化;再进一步考虑农产品生产率的影响因素, 构建非线性约束和目标函数对线性模型进行扩展;最后通过具体实例诠释大规模农产品生产计划拟订过程。结果表明, 土地满负荷生产农产品将打破市场的供需平衡, 容易造成"丰产不丰收"现象;利用本文模型制定农产品生产计划, 虽土地有闲置, 但在土地闲置期间, 土地肥力能得到恢复, 各种有机质能得到再生, 有利于为农产品持续生产提供良好的生产条件和环境, 有利于提高农产品的质量和产量, 增加经济效益。
The farmland transfer generates various rural economic entities, such as farmers' professional cooperatives, agricultural enterprises and so on, and they take possession of large-scale farmland. In order to achieve large-scale production and intensive management of the agricultural products, it is important to make production plan on the base of the land resources, agricultural information, and production technology. In this context, the network model, the linear model and nonlinear model are successively built for the agricultural production plan. Firstly, based on the spatial-temporal and time flexible characteristics of the agricultural production, the network model of agricultural production plan is built. Secondly, through analyzing the network flow balance problems, the constraint conditions are derived, and combining with the quantitative control of agricultural products, the network model is optimized to get the linear model. Thirdly, considering the influence factors of agricultural productivity, the linear model is extended by establishing nonlinear constraints and objective function. Finally, the numerical example is provided to illustrate the process about making the large-scale agricultural production plan. Results of the numerical example show that the balance between supply and demand of market of agricultural products will be broken if the farmland is fully engaged for the agricultural production, which will cause harvest paradox, however. If the model presented in this paper is applied to formulate scientific and reasonable production plan by the various rural economic entities, although part of the farmland is unused, it will be also help to restore soil fertility and regenerate a variety of organic matter, and to improve good conditions and environment for subsequent production of agriculture products, which is beneficial to improve the quality and output of agricultural products, and increase economic benefit.
[1] Hildreth C, Reiter S. On the choice of a crop rotation plan[M]//Koopman T C. Activity analysis of production and allocation, US:DH Information services, 1951:177-188.
[2] Nondin H M, Fatimah S. A mathematical programming approach to crop mix problem[J]. African Journal of Agricultural Research, 6(1):191-197.
[3] Heady E. The economics of rotations with farm and production policy applications[J]. Journal of Farm Economics, 30(4):645-664.
[4] Musser W N, Alexander V J, Tew B V, et al. A mathematical programming model for vegetable rotations[J]. Southern Journal of Agricultural Economics, 17(1):169-176.
[5] McCarl B, El-Nazer T. The choice of crop rotation:A modeing approach and case study[J]. American Journal of Agricultural Economics, 68(1):127-136.
[6] Dogliotti S, Rossing W, Ittersum M. Rotat, a tool for systematically generating crop rotations[J]. European Journal of Agronomy, 19(2):239-250.
[7] Heneveld W K, Stegeman A W. Crop succession requirements in agricultural production planning[J]. European Journal of Operational Research, 166(2):406-429.
[8] Detlefsen N K, Jensen A L. Modeling optimal crop sequences using network flows[J]. Agricultural System, 94(2):566-572.
[9] Castellazzi M, Wood G, Burgess P, et al. A systematic representation of crop rotations[J]. Agricultural Systems, 97(1):26-33.
[10] Piech B, Rehman T. Application of multiple criteria decision making methods to farm planning:A case study[J]. Agricuftural System, 1993, 41(3):305-319.
[11] Sarker R A, Quaddus M A. Modelling a nationwide cropplanning problem using a multiple criteria decision making tool[J]. Computers & industrial Engineering, 2002, 42(2):541-553.
[12] Annetts J, Audsley E. Multiple objective linear programming for environmental farm planning[J]. Journal of the Operational Research Society, 2002, 53(9):933-943.
[13] Tsakiris G, Spiliotis M. Cropping pattern planning under water supply from multiple sources[J]. Irrigation and Drainage Systems, 2006, 20(1):57-68.
[14] Bartolini F, Bazzani G, Gallerani V, et al. The impact of water and agriculture policy scenarios on irrigated farming systems in Italy:An analysis based on farm level multi-attribute linear programming models[J]. Agricultural Systems, 2007, 93(1):90-114.
[15] Garcia F, Guerrin F, Martin-Clouaire R, et al. The human side of agricultural production management-the missing focus in simulation approaches[C]. Proceedings of the MODSIM 2005 International Congress on Modelling and Simulation, Melbourne, December 12-15, 2005.
[16] DeVoila P, Rossingb W A H, Hammera G L. Exploring profit-sustainability trade-offs in cropping systems using evolutionary algorithms [J]. Environmental Modelling & Software, 2006, 21(9):1368-1374.
[17] Sarker R, Ray T. An improved evolutionary algorithm for solving multi-objective crop planning models[J]. Computers and Electronics in Agriculture, 2009, 68(2):191-199.
[18] 于啸, 苏中滨, 沈维政, 等.基于改进遗传算法的大型农场种植计划优化系统研究[C].中国农业工程学会电气信息与自动化专委会、中国电机工程学会农村电气化分会科技与教育专委会学术年会, 北京, 10月29-31日, 2010.
[19] 施文.基于遗传算法的农作物生产计划优化研究[D].哈尔滨:东北农业大学, 2005.
[20] 李元强, 那明军, 杨晓丽, 等.农业生产计划模拟退火算法应用[J].农机化研究, 2004, (3):84-85.
[21] 穆勇, 乔忠, 侯忠生, 等.垦区农场种植业决策的模糊规划法[J].系统工程理论与实践, 2000, 20(6):137-143.
[22] 李春萍, 刘晓俊.模糊环境下的农业生产计划模型[J].安徽农业科学, 2007, 35(24):7697-7698.
[23] 国家发展与改革委员会价格司.全国农产品成本收益资料汇编2012[M]. 北京:中国统计出版社, 2012.