本文主要对2006年至2011年上证综指收益率序列的高频波动性进行预测研究。首先,针对金融数据的非线性和不确定等特性,借助模糊逻辑系统,提出一种新的金融市场波动率的预测方法-模糊FEGARCH模型,用来更好的针对具有非线性特性的收益率数据进行预测。其次,为了判断分布型模型和不对称型模型对预测精度的影响程度,分别采用分布型(GARCH-N,GARCH-t,GARCH-HT和GARCH-SGT)和不对称型(GJR-GARCH、EGARCH和模糊FEGARCH)的波动模型进行高级能力预测法(SPA)检测。实证结果表明,不对称模型对波动率预测的影响程度比分布假设的确定更为重要,而且模糊FEGARCH模型对于具有尖峰厚尾、高偏度和杠杆效应的非线性波动数据的预测能力更佳,说明了该模型的有效性与实用性。
In general, the transmission of volatility in the stock market is time-varying, nonlinear, and asymmetric with respect to both positive and negative results. Given this fact, the method of fuzzy logic systems is adopted to modify the threshold values for an EGARCH model.The volatility forecasting for the SSEC stock index series from 2006 to 2011 is provided and the essential source of performance improvements is identified between distributional assumption and volatility specification suing distribution-type (GARCH-N,GARCH-t,GARCH-HT and GARCH-SGT)and asymmetry-type(GJR-GARCH and EGARCH) volatility models through the superior predictive ability test. Such evidence strongly demonstrates that modeling asymmetric components which is the fuzzy EGARCH model is more important than specifying error distribution for improving volatility forecasts of financial returns in the presence of fat-tails,leptokurtosis, skewness, leverage effects and nonlinear effects in china stock market.
[1] Bollerslev T. Generalized autoregressive conditional heteroskedasticity [J]. Journal of Econometrics,1986,31(3):307-327.
[2] Bollerslev T. A conditional heteroskedastic time series model for speculative prices and rates of return [J]. Review of Economics and Statistics, 1987,69(3):542-547.
[3] Hung J C, Lee M C, Liu H C. Estimation of Value-at-Risk for energy commodities via fat-tailed GARCH models [J]. Energy Economics,2008,30(3):1173-1191.
[4] Theodossiou P. Financial data and the skewed generalized t distribution [J]. Management Science, 1998,(44):1650-1661.
[5] Wilhelmsson A. GARCH forecasting performance under different distribution assumptions [J]. Journal of Forecasting,2006,(25):561-578.
[6] Chuang I Y, Lu J R, Lee P H. Forecasting volatility in the financial markets: A comparison of alternative distributional assumptions [J]. Applied Financial Economics,2007, 17(3):1051-1060.
[7] Nelson D B. Conditional heterskedasticity in asset returns: A new approach [J]. Econometrica,1991,59(12):347-370.
[8] Glosten L, Jagannathan R, Runkle D. On the relation between the expected value and the volatility nominal excess return on stocks [J]. Journal of Finance,1993,48(5):1779-1801.
[9] Engle R F, Ng V K. Measuring and testing the impact of news on volatility [J]. Journal of Finance, 1993,48(5): 1749-1778.
[10] Taylor J W. Volatility forecasting with smooth transition exponential smoothing [J]. International Journal of Forecasting, 2004, 20(2): 273-286.
[11] Loudon G F, Watt W H, Yadav P K. An empirical analysis of alternative parametric ARCH models [J]. Journal of Applied Econometrics,2000,15(2):117-136.
[12] Evans T, McMillan D G. Volatility forecasts: The role of asymmetric and long-memory dynamics and regional evidence [J]. Applied Financial Economics, 2007,17(17):1421-1430.
[13] Awartani B M A, Corradi V. Predicting the volatility of the S&P-500 stock index via GARCH models: The role of asymmetries [J]. International Journal of Forecasting,2005,21(1): 167-183.
[14] Brooks C, Persand G. Model choice and Value-at-Risk performance [J].Financial Analysts Journal, 2002,58(5): 87-97.
[15] Sadorsky P. Modeling and forecasting petroleum futures volatility[J]. Energy Economics,2006,28(4):467-488.
[16] 于亦文. 实际波动率与GARCH模型的特征比较分析 [J]. 管理工程学报,2006,20(2):65-69
[17] 杨科,陈浪南. 中国股市高频波动率跳跃的特征分析 [J]. 系统工程学报,2012,27(4):492-497.
[18] 张小斐,田金方.异质金融市场驱动的已实现波动率计量模型 [J]. 数量经济技术经济研究,2011,(9):140-153
[19] 王良,冯涛. 中国ETF基金价格"已实现"波动率、跟踪误差之间的Granger关系研究 [J]. 中国管理科学,2012,20(1):59-70.
[20] 刘伟,陈敏,梁斌.基于金融高频数据的ETF套利分析 [J].中国管理科学,2009,17(2):1-7.
[21] Andersen T G, Bollerslev T, Meddahi N. Correcting the errors: Volatility forecast evaluation using high frequency data and realizedvolatilities [J], Econometrica, 2005, 73( 1) : 279-296.