主管:中国科学院
主办:中国优选法统筹法与经济数学研究会
   中国科学院科技战略咨询研究院
论文

超高频数据的日内效应调整方法研究

展开
  • 东北财经大学数学与数量经济学院, 辽宁 大连 116025
王维国(1963-),男(汉族),吉林通榆人,东北财经大学数学与数量经济学院,教授,研究方向:经济计量分析、管理决策方法.

收稿日期: 2013-10-15

  修回日期: 2014-03-24

  网络出版日期: 2015-07-22

基金资助

国家自然科学基金面上项目(71171035);辽宁省教育厅人文社会科学重点研究基地专项项目(ZJ2013039)

The Research of Intra-dayPeriodic Adjustment Based on Ultra High Frequency Data

Expand
  • Dongbei University of Finance and Economics, Dalian 116025, China

Received date: 2013-10-15

  Revised date: 2014-03-24

  Online published: 2015-07-22

摘要

日内效应在金融高频数据研究中已被广泛证实,是一种日内周期性运动的动态效应,它影响了以微观金融指标为参数的计量模型的准确估计。基于金融超高频持续期数据,本文首先论述了日内效应调整的重要性,然后引入自适应映射(SOM)的方法对日内效应进行调整。SOM是一种基于神经网络学习的特征提取方法,能够动态识别高维数据中的结构特征,克服了静态调整方法的不足。最后通过建立基于自回归条件持续期模型(ACD)的蒙特卡罗模拟实验,比较了三种日内效应调整方法的效果。模拟结果表明SOM方法在日内效应调整中更为有效和稳定,特别适合大数据条件下的周期性结构分析。

本文引用格式

王维国, 佘宏俊 . 超高频数据的日内效应调整方法研究[J]. 中国管理科学, 2015 , 23(6) : 49 -56 . DOI: 10.16381/j.cnki.issn1003-207x.201.06.007

Abstract

Intra-day periodicity has been widely found in financial high frequency data study,It is a dynamic effect characterized by intra-day periodic motion and it affects the accuracy of econometric model estimation which contains intra-day financial variables. The importance of intra-day periodic adjustment is discussed firstly in this study and then introduces self-organizing maps as a intra-day periodic adjustment solution are introduced based on financial ultra high frequency duration data. The SOM method is a feature extraction on the basis of neural network learning which can recognize the dynamic feature in high-dimensional data in order to overcome the disadvantage of static periodic adjustment. Finally a monte carlo simulation through autoregressive conditional duration model is built to compare the effects of three intra-day periodic adjustment methods. The result shows that the SOM method performs more effective and stable.Therefore SOM method can be particularly suited for analysis of periodic structure in big data.

参考文献

[1] Engle R F, Russell J R. Autoregressive conditional duration: A new model for irregularly spaced transaction data[J]. Econometrica,1998,66(5): 1127-1162.

[2] Pacurar M. Autoregressive conditional duration models in finance: A survey of the theoretical and empirical literature[J]. Journal of Economic Surveys,2008,22(4): 711-751.

[3] Wood R A, Mcinish T H, Ord J K. An investigation of transactions data for NYSE stocks[J]. Journal of Finance,1985,40(3): 723-739.

[4] Daigler R T. Intraday futures volatility and theories of market behavior[J]. Journal of Futures Markets,1997,17(1): 45-74.

[5] Degennaro R P, Shrieves R E. Public information releases, private information arrival and volatility in the foreign exchange market[J]. Journal of Empirical Finance,1997,4(4): 295-315.

[6] Andersen T G, Bollerslev T. Intraday periodicity and volatility persistence in financial markets[J]. Journal of Empirical Finance,1997,4(2): 115-158.

[7] Cai Jun, Cheung Y-L.‘Once-in-a-generation' yen volatility in 1998: Fundamentals, intervention, and order flow[J]. Journal of International Money and Finance,2001,20(3): 327-347.

[8] Bollerslev T, Ghysels E.Periodic autoregressive conditional heterosced -asticity[J]. Journal of Business & Economic Statistics,1996,14(2): 139-151.

[9] Cho J H, Daigler R T. A filtering process to remove the stochastic component from intraday seasonal volatility[J]. Journal of Futures Markets, 2014,34(5): 479-495.

[10] Engle R F, Sokalska M E. Forecasting intraday volatility in the us equity market:Multiplicative component garch[J]. Journal of Financial Econometrics,2012,10(1): 54-83.

[11] Melvin M, Yin Xixi. Public information arrival, exchange rate volatility, and quote frequency[J]. The Economic Journal,2000,110(465): 644-661.

[12] Bauwens L, Giot P. The logarithmic ACD model: An application to the bid-ask quote process of three NYSE stocks[J]. Annales d'Economie et de Statistique,2000,(60): 117-149.

[13] Veredas D, Rodríguez Poo J M, Espasa A. On the (intradaily) seasonality and dynamics of a financial point process: A semiparametric approach[J].Working Paper,Universidad Carlos III de Madrid,2001.

[14] Boudt K, Croux C, Laurent S. Robust estimation of intraweek periodicity in volatility and jump detection[J].Journal of Empirical Finance,2011,18(2): 353-367.

[15] Wu Zhengxiao. On the intraday periodicity duration adjustment of high-frequency data[J]. Journal of Empirical Finance,2012,19(2): 282-291.

[16] 张晓峒, 徐鹏. 季节调整方法在中国的发展与应用[J].统计研究,2013,30(09): 10-16.

[17] 陈飞, 高铁梅. 结构时间序列模型在季节调整方面的应用——与X-12季节调整方法的比较分析[J]. 系统工程理论与实践,2007,(11): 7-14.

[18] 徐正国, 张世英. 上海股市微观结构的超高频数据分析[J]. 天津大学学报(社会科学版),2005,7(03): 86-89.

[19] 徐正国, 张世英. 高频金融数据"日历效应"的小波神经网络模型分析[J]. 数学的实践与认识,2007,37(15): 1-6.

[20] Kohonen T. Self-organizing maps[M]. Mew York:Springer,2001.
文章导航

/