主管:中国科学院
主办:中国优选法统筹法与经济数学研究会
   中国科学院科技战略咨询研究院
论文

考虑损失规避零售商的多期多产品供应链网络均衡

展开
  • 1. 青岛大学管理科学与工程学院, 山东 青岛 266071;
    2. 俄罗斯科学院, 彼得罗扎沃茨克, 俄罗斯 185910;
    3. 北京师范大学政府管理学院, 北京 100875
张桂涛(1975-),男(汉族),山东人,青岛大学管理科学与工程学院,讲师,博士生,研究方向:决策分析、物流与供应链管理.

收稿日期: 2014-07-22

  修回日期: 2015-01-02

  网络出版日期: 2015-07-22

基金资助

国家自然科学基金资助项目(71371102);山东省自然科学基金项目(ZR2012GM002)

Multi-period Supply Chain Network Equilibrium with Loss-averse Retailer and Multi-products Flow

Expand
  • 1. School of Management Science and Engineering, Qingdao University, Qingdao 266071, China;
    2. The Russian Academy of Sciences, Petrozavodsk 185910, Russia;
    3. School of Government, Beijing Normal University, Beijing 100875, China

Received date: 2014-07-22

  Revised date: 2015-01-02

  Online published: 2015-07-22

摘要

供应链是一个具有层级结构的复杂网络,一般包括制造商层、零售商层和需求市场层等渠道成员。为描述供应链网络的动态特征,本文将决策时间离散划分为多个规划期,同一规划期内各类成员的决策环境相对稳定;相反在不同规划期之间可能发生改变。制造商生产多种类型的产品,零售商面临随机需求环境且为损失规避者。运用前景理论描述了零售商的损失规避行为,利用制造商的库存转移来描述相邻规划期间的关系。利用变分不等式、对偶理论和互补理论刻画了制造商层、零售商层和需求市场层的最优决策行为,并推导整个供应链网络的均衡条件。设计了求解模型的修正投影算法。通过算例阐明了零售商盈亏平衡点的特征,分析了损失规避系数对供应链网络企业最优决策的影响。研究表明:随着损失规避系数的增大,零售商的第1盈亏平衡点减小,第2盈亏平衡点增大;零售商的订货量减小,其期望利润和期望效用增加,相反制造商和消费者的利益均受损;随着缺货成本的增加,零售商需向制造商订购更多的产品来规避缺货损失,但这也同时增加了其过量订货和滞销的风险;当零售商在某一期的损失规避系数发生改变时,零售商和制造商需在整个规划期范围内调整策略。

本文引用格式

张桂涛, 胡劲松, 孙浩, Mazalov, 徐梦蝶 . 考虑损失规避零售商的多期多产品供应链网络均衡[J]. 中国管理科学, 2015 , 23(6) : 73 -82 . DOI: 10.16381/j.cnki.issn1003-207x.201.06.010

Abstract

Supply chain is a complicated system which can be formulated as a network consisting of manufacturer tier, retailer tier and demand market tire. Based on the Prospect Theory, the decision makers prefer risk-averse when facing the uncertain revenue, and the retailers are usually confronted with uncertain demand and profits. To describe the dynamic characteristic of the supply chain network, the decision making time is discreted into multi-period planning horizons. The decision-making environments of various players in a planning period are stable, while may be changing in different planning periods. The manufacturers make various types of products, and the risk-averse retailers deal with a corresponding consumer market with stochastic demand. Prospect theory is adopted to describe the loss-averse behaviors of retailers, and the transferring inventory is used to express the relationship between adjacent periods. The optimal decision behaviors of manufacturers, retailers and demand markets are modeled by variational inequalities, Lagrange duality theory and complementary theory, and then the governing supply chain network equilibrium is obtained. In turn, the solving method with modified projection contraction algorithm is designed. Using numerical examples, the characteristic of two breakeven points of retailers is obtained and the impact of the loss-averse coefficients in different periods on the optimal strategies of various players is analyzed. The results show that when the loss-averse coefficients of retailers increase, the first breakeven points of the retailers decrease and the second breakeven points increase; the order quantity of the retailers decrease, and their expected profits and expected utilities increase. On the contrary, it will be harmful to the manufacturers and consumers; when the stock-out cost increase, the retailers have to order more products to avoid stock-out losses, but meanwhile increase the possibilities of surplus; when the loss-averse coefficients change in a certain period, the retailers and manufacturers should adjust their strategies in the whole planning horizons accordingly.The supply chain risk management theory will be enriched and references for dynamic supply chain modeling are suggested in this study.

参考文献

[1] Nagurney A, Dong J, Zhang Ding.A supply chain network equilibrium model [J]. Transportation Research: Part E, 2002, 38(5):281-303.

[2] Dong J, Zhang Ding, Nagurney A. A supply chain network equilibrium model with random demand [J]. European Journal of Operational Research, 2004, 156(1):194-212.

[3] 张桂涛, 胡劲松, 孙浩, 等. 具有缺陷产品的双渠道闭环供应链网络均衡[J]. 中国管理科学, 2013,21(5): 68-79.

[4] Savaskan R C, Bhattacharya S, Van Wassenhove L N. Closed-loop supply chain models with product remanufacturing [J]. Management Science, 2004, 50(2):239-252.

[5] Yue Jinfeng, Austin J, Wang M C, et al. Coordination of cooperative advertising in a two-level supply chain when manufacturer offers discount [J]. European Journal of Operational Research, 2006, 168(1): 65-85.

[6] Dong J, Zhang Ding, Yan Hong, et al. Multitiered supply chain networks: multicriteria decision—making under uncertainty [J]. Annals of Operations Research, 2005, 135(1): 155-178.

[7] Yang Guangfen, Wang Zhiping, Li Xiaoqiang. The optimization of the closed-loop supply chain network [J]. Transportation Research Part E: Logistics and Transportation Review, 2009, 45(1): 16-28.

[8] Nagurney A. Supply chain network design under profit maximization and oligopolistic competition [J]. Transportation Research Part E: Logistics and Transportation Review, 2010, 46(3): 281-294.

[9] 张铁柱,刘志勇,滕春贤,等.多商品流供应链网络均衡模型的研究[J].系统工程理论与实践, 2005, 25 (7) :61-66.

[10] 滕春贤,姚锋敏,胡宪武. 具有随机需求的多商品流供应链网络均衡模型研究[J].系统工程理论与实践, 2007, 27(10): 77-83.

[11] 徐兵,朱道立. 产品随机选择下多商品流供应链网络均衡模型研究[J].系统工程理论与实践, 2007, 27(3): 82-90,104.

[12] 胡劲松,徐元吉,刘芳霞,等. 具有模糊需求的多商品流供应链网络均衡研究[J]. 控制与决策, 2012,27(5): 665-672.

[13] Fisher M, Raman A. Reducing the cost of demand uncertainty through accurate response to early sales [J]. Operations research, 1996, 44(1): 87-99.

[14] Schweitzer M E, Cachon G P. Decision bias in the newsvendor problem with a known demand distribution: Experimental evidence [J]. Management Science, 2000, 46(3): 404-420.

[15] Kahneman D, Tversky A. Prospect theory: An analysis of decision under risk [J]. Econometrica: Journal of the Econometric Society, 1979, 47(2): 263-291.

[16] 文平.损失厌恶的报童——预期理论下的报童问题新解[J]. 中国管理科学,2005,13(6):64-68.

[17] Mahesh N, Steven S. Prospect theory and the newsvendor Problem [J]. Management Science, 2007, 60(4):1057-1062.

[18] Liu Wei, Song Shiji, Wu Cheng. Impact of loss aversion on the newsvendor game with product substitution [J]. International Journal of Production Economics, 2013, 141(1):352-359.

[19] 沈厚才,徐进,庞湛. 损失规避偏好下的定制件采购决策分析[J]. 管理科学学报, 2004,7(6): 37-44.

[20] 周永务,肖旦,李绩才.损失规避零售商订货量与广告费用的联合决策[J].系统工程理论与实践, 2012,32(8):1727-1737.

[21] 曹晓刚,郑本荣,夏火松,等. 具有风险规避型零售商的闭环供应链网络均衡分析[J]. 控制与决策, 2014,29(4): 659-665.

[22] Nagurney A, Cruz J, Dong J, et al. Supply chain networks, electronic commerce, and supply side and demand side risk [J]. European Journal of Operational Research, 2005, 164(1):120-142.
文章导航

/