主管:中国科学院
主办:中国优选法统筹法与经济数学研究会
   中国科学院科技战略咨询研究院
论文

稳健非参数VaR建模及风险量化研究

展开
  • 山东工商学院经济学院, 山东 烟台 264005
解其昌(1983-),男(汉族),天津人,山东工商学院经济学院,博士,讲师,研究方向:金融风险管理、金融计量.

收稿日期: 2013-05-22

  修回日期: 2015-01-13

  网络出版日期: 2015-08-19

基金资助

国家社会科学基金资助项目(14BJY180);山东省自然科学基金青年项目(ZR2014GQ009)

Robust Nonparametric VaR Modeling and Risk Quantification Research

Expand
  • School of Economics, Shandong Institute of Business and Technology, Shandong Yantai 264005, China

Received date: 2013-05-22

  Revised date: 2015-01-13

  Online published: 2015-08-19

摘要

参数VaR模型被广泛应用于风险测量中,然而需要给出具体的结构形式,这就容易发生模型错误设定的灾难,使风险计量的精确性易于产生较大偏差。针对参数VaR模型的设定误差问题,本文构建了SQ-ARCH和Nop-Quantile两个非参数VaR模型,诣在提高传统风险计量模型的灵活性、稳定性和准确性。采用稳健的分位数回归方法,得到了计算这两个VaR模型的具体表达式并给出了模型估计的算法和步骤。Monte Carlo模拟发现无论模型正确还是错误设定非参数VaR模型比参数ARCH类VaR模型更稳健。此外,把这两个稳健非参数VaR模型应用于我国股票市场风险量化的实证分析中。研究结果表明稳健非参数VaR模型比参数ARCH类VaR模型度量风险更准确。

本文引用格式

解其昌 . 稳健非参数VaR建模及风险量化研究[J]. 中国管理科学, 2015 , 23(8) : 29 -38 . DOI: 10.16381/j.cnki.issn1003-207x.2015.08.004

Abstract

The risk assessment is an important topic in risk management. The parametric VaR models are widely used in risk measurement. However, they are subject to large errors of model misspecification. In order to avoid the defect of parametric models, two nonparametric models for estimating VaR were proposed, which are SQ-ARCH and Nop-Quantile models. These two models are not restricted by their own specific structures and have great flexibility and stability in use. By the robust quantile regression method, we derived respectively the calculative steps and obtained the closed expressions of VaRs based on the two models. Monte Carlo simulation confirms that the nonparametric VaR models are more robust than the type of parametric ARCH VaR models, regardless of the correct or wrong setting of models. In addition, the two robust nonparametric VaR models are applied to qualify the risk of Chinese stock market by using the composite index data of Shanghai. It is founded that the returns of sample are non-normal and fat-tailed distribution. The technique of backtesting is used to examine the statistical properties of the nonparametric models and the ARCH models. The test results show that the robust nonparametric models outperform the type of non-robust parametric ARCH models in measuring VaR. The estimated risk values of ARCH are quite variable relative to the nonparametric models. Furthermore, the SQ-ARCH and Nop-Quantile models can yield more accurate VaR estimates than the ARCH models. The suggested models provided two effective methods for risk measurement.

参考文献

[1] Mandelbrot B. The variation of certain speculative prices [J]. The Journal of Business, 1963, 36(4): 394-419.

[2] Fama E. The behavior of stock market prices [J]. Journal of Business, 1965, 38(1): 34-105.

[3] Hagerman R. More evidence on the distribution of security returns [J]. Journal of Finance, 1978, 33(4): 1213-1221.

[4] McDonald J B, Newey W K. Partially adaptive estimation of regression models via the generalized t distribution [J]. Econometric Theory, 1988, 4(3): 428-457.

[5] Hansen B. Autoregressive conditional density estimation [J]. International Economic Review, 1994, 35(3): 705-730.

[6] Theodossiou P. Financial data and the skewed generalized t distribution [J]. Management Science, 1998, 44(12): 1650-1661.

[7] Cappuccio N, Lubian D, Raggi D. MCMC Bayesian estimation of a skew-GED stochastic volatility model [J]. Studies in Nonlinear Dynamics and Econometrics, 2004, 8(2): 1558-3708.

[8] Engle R F. Autoregressive conditional heteroscedasticity with estimates of the variance of the United Kingdom inflation [J]. Econometrica, 1982, 50(4): 987-1007.

[9] Bollerslev T. Generalized autoregressive conditional heteroscedasticity [J]. Journal of Econometrics, 1986, 31(3): 307-327.

[10] Giot P, Laurent S. Modelling daily Value-at-Risk using realized volatility and ARCH type models [J]. Journal of Empirical Finance, 2004, 11(3): 379-398.

[11] Kuester K, Mittnik S, Paolella M S. Value-at-Risk prediction: A comparison of alternative strategies [J].Journal of Financial Econometrics, 2006, 4(1): 53-89.

[12] 刘向丽, 成思危, 汪寿阳, 等. 期现货市场间信息溢出效应研究 [J]. 管理科学学报, 2008, 3(11): 125-139.

[13] 魏宇. 股票市场的极值风险测度及后验分析研究 [J]. 管理科学学报, 2008, 11(1): 78-88.

[14] 林宇, 卫贵武, 魏宇, 等. 基于Skew-t-FIAPARCH的金融市场动态风险VaR测度研究 [J]. 中国管理科学, 2009,17(6): 17-24.

[15] Lee C F, Su J B. Alternative statistical distributions for estimating value-at-risk: Theory and evidence [J]. Review of Quantitative Finance and Accounting, 2012, 39(3): 309-331.

[16] 王鹏, 魏宇, 王鸿. 沪深300股指期货的风险测度模型研究 [J]. 数理统计与管理, 2014, 33(4): 724-733.

[17] 谢尚宇, 姚宏伟, 周勇. 基于ARCH-Expectile方法的VaR和ES尾部风险测量 [J]. 中国管理科学, 2014, 22(9): 1-9.

[18] Dowd K. Estimating VaR with order statistics [J]. The Journal of Derivatives, 2001, 8(3): 23-30.

[19] Scaillet O. Nonparametric estimation and sensitivity analysis of expected shortfall [J]. Mathematical Finance, 2004, 14(1): 115-129.

[20] Chen Songxi, Tang Chengyong. Nonparametric inference of value at risk for dependent financial returns [J]. Journal of Financial Econometrics, 2005, 3(2): 227-255.

[21] 叶五一, 缪柏其, 吴振翔. 基于收益率修正分布的VaR估计 [J]. 数理统计与管理, 2007, 26(5): 867-874.

[22] Cai Zongwu, Wang Xian.Nonparametric estimation of conditional var and expected shortfall [J]. Journal of Econometrics, 2008, 147(1): 120-130.

[23] 赵晓玲, 陈雪蓉, 周勇. 金融风暴中基于非参估计VaR和ES方法的风险度量 [J]. 数理统计与管理, 2012, 31(3): 381-383.

[24] Koenker R, Zhao Quanshui. Conditional quantile estimation and inference of ARCH models [J]. Econometric Theory, 1996, 12(5): 793-813.

[25] Wu Guojun, Xiao Zhijie. An analysis of risk measures [J]. Journal of Risk, 2002, 4(4): 53-75.

[26] Fan Jianqing, Gijbels I. Data-driven bandwidth selection in local ploynomial fitting: variable bandwidth and spatial adaption [J]. Journal of the Royal Statistical Sotiety, Series B, 1995, 57(2): 371-394.

[27] Yu Keming, Jones M C. Local linear quantile regression [J]. Journal of the American Statistical Association, 1998, 93(441): 228-237.

[28] Peter C. Elements of financial risk management, second edition [M].Massachusetts,US: Academic Press, 2011.

[29] Hendricks D. Evaluation of Value-at-Risk models using historical data [J]. Economic Policy Review, 1996, 2(4): 39-70.

[30] Kupiec P H. Techniques for verifying the accuracy of risk measurement models [J]. Journal of Derivatives, 1995, 3(2): 73-84.
文章导航

/