主管:中国科学院
主办:中国优选法统筹法与经济数学研究会
   中国科学院科技战略咨询研究院
论文

DC型企业年金最优资产配置和给付方案问题研究

展开
  • 中国人民大学 财政金融学院, 北京 100872
何林(1981-),女(满族),黑龙江人,中国人民大学财政金融学院,副教授,研究方向:保险与精算.

收稿日期: 2013-01-29

  修回日期: 2014-12-26

  网络出版日期: 2015-08-19

基金资助

2013年社科基金重大项目(13&ZD164);北京市教委"北京市高校青年英才计划"(YETP0181)

Optimal Asset Allocation and Benefit Outgo Policies of the DC Pension Plan

Expand
  • The School of Finance, Renmin University of China, Beijing 100872, China

Received date: 2013-01-29

  Revised date: 2014-12-26

  Online published: 2015-08-19

摘要

DC型企业年金管理者如何选择最优的资产配置策略和给付方案,以实现参保者最大的效用,是理论界和实务界都关注的问题。本文首次将生存者利益部分的精算规律考虑到个人年金账户余额变动满足的随机微分方程中,并将实际给付金额与预期给付中枢的二次偏差最小化作为优化目标。通过HJB变分方法,得到了最优的资产配置比例和最优给付方案的解析形式,并利用蒙特卡洛模拟方法研究了个人年金账户余额和预期给付中枢对最优策略的影响。结果表明:个人年金账户余额对实际给付金额和无风险资产配置比例存在正向影响;预期给付中枢对无风险资产配置比例存在负向影响。

本文引用格式

何林 . DC型企业年金最优资产配置和给付方案问题研究[J]. 中国管理科学, 2015 , 23(8) : 39 -45 . DOI: 10.16381/j.cnki.issn1003-207x.2015.08.005

Abstract

In the paper, the optimal asset allocation and benefit outgo policies of the pension management are proposed to maximize the utility of the pension member after retirement. It is the first time to explore the actuarial principles of the mortality credit in the pension management framework. The square deviation between the actual and the expected benefit outgo is chosen as the objective functions. Using HJB variational methods, the optimal asset allocation and the benefit outgo policies are established. According to the simulation results, the accumulation of the pension fund has positive influence on the optimal benefit outgo as well as the proportion allocated on the risk-free asset. Meanwhile, the expected benefit outgo has negative influence on the proportion allocated on the risk-free asset.

参考文献

[1] Cairns A J G.Some notes on the dynamics and optimal control of stochastic pension fund models in continuous time[J]. ASTIN Bulletin, 2000,30(1): 19-55.

[2] Battocchio P, Menoncin F. Optimal pension management in a stochastic framework[J]. Insurance: Mathematics and Economics, 2004, 34(1): 79-95.

[3] Boulier J F, Huang Shaojuan, Tailand G.Optimal management under stochastic interest rates: The case of a protected defined contribution pension funds[J]. Insurance: Mathematics and Economics, 2001, 28(2):173-189.

[4] 何大义,高建伟.基于贝叶斯随机规划方法的养老保险基金投资策略研究[J].中国管理科学, 2011, 19(4): 54-59.

[5] Gao Jianwei. Stochastic optimal control of DC pension funds[J].Insurance: Mathematics and Economics, 2008,42(3): 1159-1164.

[6] 郭磊,陈方正.基于CAAR效用函数的企业年金最优个体投资策略[J].同济大学学报,2008,36(3):424-426.

[7] Devolder P, Princep M B, Fabian I D. Stochastic optimal control of annuity contracts[J].Insurance: Mathematics and Economics, 2003,33(2):227-238.

[8] 王云多.整合工作、退休与一生收益决策的最优投资组合研究[J].中国管理科学, 2014,22(6): 27-33.

[9] 张初兵,荣喜民.均值-方差模型下DC型养老金的随机最优控制[J].系统工程理论与实践,2012,32(6):1314-1323.

[10] 叶燕程,高随祥.缴费确定型企业年金最优投资策略研究[J].中国科学院研究生院学报,2007,24(2): 149-13.

[11] Ngwira B, Gerrard R. Stochastic pension fund control in the presence of Poisson jumps[J]. Insurance: Mathematics and Economics, 2007,40(2): 238-292.

[12] Chang S C, Tzeng L Y, Miao J C Y.Pension funding incorporating downside risks[J]. Insurance: Mathematics and Economics, 2003,32(2): 217-228, 2003.

[13] 郭磊,陈方正.退休后企业年金最优投资决策[J].系统工程,2006, 24(2):78-82.

[14] Blake D, Cairns A J G,Dowd K.Pensionmetrics II: Stochastic pension plan design during the distribution phase[J]. Insurance: Mathematics and Economics,2003, 33(3):29-47.

[15] Milevsky M A,Robinson C.Self-annuitization and ruin in retirement[J]. North American Actuarial Journal, 2000, 4(4), 112-129.

[16] 翟永会,王晓芳,闫海峰.企业年金积累期的最优动态资产配置策略[J].中国管理科学, 2010,18(5): 40-48.

[17] 于小东,吴佳琦.缴费确定型企业年金领取阶段的最佳策略[J].经济评论,2007,(3): 141-147.

[18] Lions P L, Sznitman A S.Stochastic differential equations with reflecting boundary conditions[J]. Communications on Pure and Applied Mathematics,1984, 37(4): 511-537.
文章导航

/