主管:中国科学院
主办:中国优选法统筹法与经济数学研究会
   中国科学院科技战略咨询研究院
论文

基于变量选择和遗传网络规划的期货高频交易策略研究

展开
  • 1. 上海财经大学统计与管理学院, 上海 200433;
    2. 深圳市福田区发展研究中心, 广东 深圳 518048
陈艳(1982-),女(汉族),四川泸州人,上海财经大学统计与管理学院,副教授,博士,研究方向:金融风险管理、商务智能.

收稿日期: 2014-07-30

  修回日期: 2015-06-18

  网络出版日期: 2015-10-24

基金资助

国家自然科学基金资助项目(71271128,71331006,71571113);长江学者和创新团队发展计划(上海财经大学,IRT13077);上海财经大学创新团队支持计划

A Study on High-Frequency Futures Trading Strategy Based on Variable Selection and Genetic Network Programming

Expand
  • 1. School of Statistics and Management, Shanghai University of Finance and Economics, Shanghai 200433, China;
    2. Development Research Center of Futian District, Shenzhen 518048, China

Received date: 2014-07-30

  Revised date: 2015-06-18

  Online published: 2015-10-24

摘要

高频交易在当前国际金融市场上炙手可热,股指期货的推出、融资融券和转融通业务的开通,使得我国高频交易市场初现端倪。本文立足于我国金融衍生品市场的现状提出了基于LASSO变量选择方法和遗传网络规划的期货高频交易策略。该策略首先使用LASSO从众多技术指标中,选出极少数最有效的指标作为判断函数,然后通过一种进化算法遗传网络规划来搜索合适的买点和买点,从而构建交易策略,并以黄金、铝和橡胶期货的5分钟高频交易数据为例进行回测检验。结果显示:第一,与最优子集法相比,LASSO方法在不降低预测精度的情况下,选出的指标数量最少,且均集中在趋势指标和震荡指标中。第二,通过结合遗传网络规划模型与Q强化学习法,搜索效率得到了显著提高,构建出适合于衍生品市场的简洁有效的交易策略,且在不同品种的期货交易中均超越了"买入并持有"策略,并获取超额收益,在量化投资领域充分体现了实践价值。

本文引用格式

陈艳, 王宣承 . 基于变量选择和遗传网络规划的期货高频交易策略研究[J]. 中国管理科学, 2015 , 23(10) : 47 -56 . DOI: 10.16381/j.cnki.issn1003-207x.2015.10.006

Abstract

In this paper, high-frequency futures trading strategy has been built by LASSO variable selection method and the genetic network programming (GNP). The proposed strategy uses LASSO as a variable selection method, which is able to select the most effective variables from a large number of technical indicators. Then, the selected indicators will be treated as the judgment functions in GNP to determine the buying and selling points. The 5 minutes high-frequency futures trading data of gold, aluminum and rubber is also used as an example for backtesting. The results show that: First, when compared with the optimal subset method, LASSO method selects the least number of indicators, while it shows almost the same prediction accuracy and better robustness. These indicators are mainly applied to describe the trend and shock. Second, GNP gets higher search efficiency and builds a simple and effective trading strategy after combining with Q reinforcement learning method. The proposed method outperforms the "Buy & Hold" strategy in different futures contracts and finally obtains the excess returns. It shows its practical value in the field of quantitative trading.

参考文献

[1] Fama E F.Efficient capital Markets:A review of theory and empirical work[J].Journal of Finance,1970,25(2):383-417.

[2] Alexander S S. Price movements in speculative markets:Trends or random walks[J]. Industrial Management Review, 1961, 2(2):7-26.

[3] Fama E F, Blume M E. Filter rules and stock market trading[J], Journal of Business,1966, 39(1):226-241.

[4] Jensen M, Benington G. Random walks and technical theories:Some additional evidence[J], Journal of Finance,1970, 25(2):469-482.

[5] Brock W, Lakonishok J, LeBaron B. Simple technical trading rules and the stochastic properties of stock returns[J], Journal of Finance,1992, 47(5):1731-1764.

[6] Bessembinder H, Chan K. The profitability of technical trading rules in the Asian stock markets[J]. Pacific-Basin Finance Journal, 1995, 3(2):257-284.

[7] Kung J J. Predictability of technical trading rules:Evidence from the Taiwan stock market[J]. Review of Applied Economics, 2009, 5(1-2):49-75.

[8] Kaboudan M A. Genetic programming prediction of stock prices[J]. Computational Economics, 2000, 16(3):207-236.

[9] El-Telbany M E. The Egyptian stock market return prediction:A genetic programming approach[C]//Proceedings of International Conference on Electrical,Electronic and Computer Engeering,Septemker, 5-7,2004.

[10] Chen Yan, Mabu S, Shimada K, et al. Trading rules on stock markets using genetic network programming with Sarsa Learning[J]. Journal of Advanced Computational Intelligence and Intelligent Informatics, 2008, 12(4):383-392

[11] Chen Yan, Mabu S, Hirasawa K. A model of portfolio optimization using time adapting genetic network programming[J]. Computers & operations research, 2010, 37(10):1697-1707.

[12] Chen Yan, Hirasawa K. A portfolio selection model using genetic relation algorithm and genetic network programming[J]. IEEJ Transactions on Electrical and Electronic Engineering, 2011, 6(5):403-413.

[13] 王鹏, 吕永健. 基于不同记忆性异方差模型的中国股票市场波动率预测[J]. 中国管理科学, 2013, 21(1):276-281.

[14] 叶五一, 李磊, 缪柏其. 高频连涨连跌收益率的相依结构以及CVaR分析[J]. 中国管理科学, 2013, 21(1):8-15.

[15] 谢尚宇, 姚宏伟, 周勇. 基于ARCH-Expectile方法的VaR和ES尾部风险测量[J]. 中国管理科学, 2014, 22(9):1-9.

[16] 张林, 李荣钧, 刘小龙. 基于小波领袖多重分形分析法的股市有效性及风险检测[J]. 中国管理科学, 2014, 22(6):17-26.

[17] 唐衍伟, 陈刚, 刘喜华. 无漂移算术布朗运动下股指期货套期保值连续出清策略[J]. 中国管理科学, 2014, 22(2):10-15.

[18] 王春. 投资者情绪对股票市场收益和波动的影响-基于开放式股票型基金资金净流入的实证研究[J]. 中国管理科学, 2014, 22(9):49-56.

[19] 任德平, 龚旭, 文凤华, 等. 中国股票投资者的处置效应检验和参考价格选择[J]. 中国管理科学, 2013, 21(3):1-10.

[20] 胡冰, 潘福铮, 胡清锋. 遗传算法在股票短期投资决策中的运用[J]. 系统工程理论与实践, 2003,(2):7-13.

[21] 王良, 冯涛. 基于两阶段决策的封闭式基金价格控制问题研究[J]. 中国管理科学, 2014, 22(2):24-31.

[22] 马明, 李松. 基于遗传算法优化混沌神经网络的股票指数预测[J]. 商业研究, 2010, (11):10-13.

[23] 吴德胜, 梁樑. 遗传算法优化神经网络及信用评价研究[J]. 中国管理科学, 2004, 12(1):68-74.

[24] 章杰宽. 智能组合预测方法及其应用[J]. 中国管理科学, 2014, 22(3):26-33.

[25] 陈晓红, 朱霞. 基于神经网络的期货套期保值决策支持系统[J]. 管理科学学报, 2001, 4(6):18-23.

[26] 王燕青, 唐万生, 韩其恒. 基于遗传算法的概率准则组合证券模拟求解[J]. 管理科学学报, 2002, 5(6):29-33.

[27] Watkins C J C H, Dayan P. Q-learning[J]. Machine learning, 1992, 8(3-4):279-292.

[28] Breiman L. Better subset regression using the nonnegative garrote[J]. Technometrics, 1995, 37(4):373-384.

[29] Tibshirani R. Regression shrinkage and selection via the lasso[J]. Journal of the Royal Statistical Society. Series B (Methodological), 1996,58(1):267-288.
文章导航

/