主管:中国科学院
主办:中国优选法统筹法与经济数学研究会
   中国科学院科技战略咨询研究院
论文

市场流动性与市场预期的动态相关结构研究——基于ARMA-GJR-GARCH-Copula模型分析

展开
  • 东南大学经济管理学院, 江苏 南京 211189
姚登宝(1987-),男(汉族),安徽合肥人,东南大学经济管理学院博士研究生,研究方向:金融工程和风险管理等.E-mail:yaodengbao@126.com

收稿日期: 2014-10-30

  修回日期: 2015-09-16

  网络出版日期: 2016-02-25

基金资助

国家自然科学基金面上项目(71273048,71473036)

Dynamic Correlation Structure Between Market Liquidity and Market Expectation:An Analysis Based on ARMA-GJR-GARCH-Copula Model

Expand
  • School of Economics and Management, Southeast University, Nanjing 211189, China

Received date: 2014-10-30

  Revised date: 2015-09-16

  Online published: 2016-02-25

摘要

本文在兼顾"时间尺度"和"价格尺度"双重因素下构建了标准化的市场流动性测度,并利用时变信息熵方法提出了一类市场预期的新指标。将ARMA-GJR-GARCH模型与时变Copula模型相结合分析了市场流动性与市场预期之间的动态相关结构。利用2009年1月~2014年9月中国股市日度数据进行实证分析,结果表明:市场流动性和市场预期存在较明显的持续性和负向"杠杆效应",通过LL、AIC和BIC三种准则比较发现时变正态Copula模型的拟合效果最好,时变相关性分析说明市场流动性和市场预期长期内保持着负相关的总体态势,欧债危机期间时变相关系数在正负状态间转换频繁,其相关结构出现了几次较大的变点,但正常时期两者之间的相关程度并不显著。该结论对于监管部门在危机期间及时引导市场预期,增强市场流动性从而减少危机传染和缓释金融风险非常重要。

本文引用格式

姚登宝, 刘晓星, 张旭 . 市场流动性与市场预期的动态相关结构研究——基于ARMA-GJR-GARCH-Copula模型分析[J]. 中国管理科学, 2016 , 24(2) : 1 -10 . DOI: 10.16381/j.cnki.issn1003-207x.2016.02.001

Abstract

A standardized market liquidity measure is construeted by considering "time scale" and "price scale" at the same time, and a new index of market expectation is given by use of time-varying information entropy method. The dynamic correlation structure between market liquidity and market expectation could be analyzed by combining ARMA-GJR-GARCH model with time-varying Copula model. The Chinese stock daily data from January 2009 to September 2014 are utilized for empirical analysis. The results indicate that there exist some significant persistent and negative "leverage effect" for market liquidity and market expectation, the time-varying normal Copula model is optimal through comparative analysis under the LL、AIC and BIC principles, and time-varying relevant analysis shows that in long term, market liquidity and market expectation have kept overall trend of negative relevant, and the time-varying correlation coefficient has frequently switched between positive and negative position,and there exist some big change-points in correlation structure during the Europe-US sovereign debt crisis, while little relevant relationship in normal period. All of these are of great importance for regulators to timely guide market expectation and enhance market liquidity during the crisis, which may reduce the crisis contagion and release the financial risk.

参考文献

[1] Kyle A S. Continuous auctions and insider trading[J]. Econometrics, 1985,53(6):1315-1335.

[2] Sarr A, Lybek T. Measuring liquidity in financial markets.Working Paper, Monetary and Exchange Affairs Department, 2002.

[3] 梁东擎. 流动性的度量及其资产价格的关系[J]. 金融研究,2008, 9:44-55.

[4] 欧阳红兵. 金融市场的流动性:理论与应用[M]. 北京:中国社会科学出版社,2012.

[5] Chung K H, Chuwonganant C. Uncertainty, market structure, and liquidity[J]. Journal of Financial Economics, 2014, 113(3):476-499.

[6] Florackis C, Kontonikas A, Kostakis A. Stock market liquidity and macro-liquidity shocks:Evidence from the 2007-2009financial crisis[J]. Journal of International Money and Finance, 2014, 44:97-117.

[7] 刘晓星,方琳,张颖,等. 欧美主权债务危机的股票市场流动性变点检测[J]. 管理科学学报,2014, 17(7):82-94.

[8] Shim L, Peter V G. Distress selling and asset market feedback. Working Paper, Bank for International Settlements,2007.

[9] 杜晓蓉. 市场预期及其影响因素与人民币汇率波动关系分析[J]. 国际金融研究,2011, 7:43-50.

[10] 孙彬,杨朝军. 市场期望与流动性的联动性研究-基于美国次贷危机的经验证据[J]. 金融监管研究,2013,(1):1-16.

[11] 韦艳华,张世英. Copula理论及其在金融分析上的应用[M]. 北京:清华大学出版社,2008.

[12] 史永东,丁伟,袁绍峰,等. 市场互联、风险溢出与金融稳定-基于股票市场与债券市场溢出效应分析的视角[J]. 金融研究,2013,(3):170-180.

[13] Patton A J. Modeling time-varying exchange rate dependence using the conditional copula. Working Paper,Department of Economics, University of California, San Diego,2001.

[14] 于文华. 沪深股市极值相依关系测度研究-基于四类时变Copula-EVT模型[J]. 西安交通大学学报(社会科学版),2013, 14(4):90-96.

[15] Ghorbel A, Trabelsi A. Energy portfolio risk management using time-varying extreme value copula methods[J]. Economic Modelling, 2014, 38:470-485.

[16] Deng Ling, Ma Chaoqun, Yang Wenyu.Portfolio Optimization via pair Copula-GARCH-EVT-CVaR model[J]. Systems Engineering Procedia, 2011, 2:171-181.

[17] Jammazi R, Tiwari A K, Ferer R, et al. Time-varying dependence between stock andgovernment bond returns:International evidence with dynamic copulas[J]. The North American Journal of Economics and Finance, 2015, 33:74-93.

[18] 林宇,陈王,王一鸣,等. 典型事实、混合Copula函数与金融市场相依结构研究[J]. 中国管理科学,2015,23(4):20-29.

[19] 张晨,杨玉,张涛. 基于Copula模型的商业银行碳金融市场风险整合度量[J]. 中国管理科学,2015, 23(4):61-69.

[20] 张海亮,卢曼,吴冲锋. 不同"融资铜"模式的风险识别与警示[J]. 中国管理科学,2015, 23(8):10-17.

[21] Glosten L, Jagannathan R, Runkle D. On the relation between the expected value and the volatility on the nominal excess returns on stocks[J]. Journal of Finance, 1993, 48(5):1779-1801.

[22] 张维,张小涛,熊熊. 上海股票市场波动不对称性研究-GJR-与VS-GARCH模型的比较[J]. 数理统计与管理,2005, 24(6):96-102.

[23] 谢赤,张鹏,曾志坚. 开放进程中人民币汇率间相依性研究-基于动态Copula-GJR-t模型的分析[J]. 金融经济学研究,2014, 29(1):79-89.

[24] 文凤华,龚旭,黄创霞,等. 股市信息流对收益率及其波动的影响研究[J]. 管理科学学报,2013, 16(11):69-80.
文章导航

/