当前,环境污染仍为中国最突出的问题之一,而降低制造业完全能耗强度是减少消耗及污染的重要途径。本文基于投入产出非线性优化理论,以制造业完全能耗强度最小为目标,并以18个行业最终需求为决策变量,构建了一个完全能耗强度非线性优化模型,特引入了进出口系数等约束条件,并基于已有投入产出表等数据,预测调整模型的相关系数。在此基础上,设计了三个方案与两个情景,并运用粒子群算法求解模型。结果表明:2015年中国制造业完全能耗强度最小值区间为0.7823-0.9048tce/万元,相比2010年,下降率区间为8.9%-21.31%。在高方案情景2下,可实现制造业完全能耗强度降低20%的目标。为实现该目标,应促进中低能耗制造业发展、降低高能耗制造业的完全能耗量、适当提高消费和进口系数并降低投资和出口系数。本文既有利于政府部门制定科学系统的节能减排政策,也有利于深化能源经济与管理理论。
Presently, environmental pollution is still one of the most prominent problems in China, to lower complete energy intensity of manufacturing industry is an important approach to reduce consumption and pollution. Based on input and output and non-linear optimization theory, non-linear optimization model of complete energy intensity is constructcd on the basis of minimum target of complete energy intensity of manufacturing industry and decision variables of 18 industries' final demands. It introduces import and export coefficients for constraint condition specially, then forecasts and adjusts correlation coefficients of the model based on existing data from input-output table and so on. On the basis of it, three schemes and two scenarios are designed and particle swarm optimization is applied to resolve model. Results show that minimum value range of complete energy intensity of manufacturing industry is from 0.7823 to 0.9048 ton of coal equivalent/ten thousand yuan in 2015. Compared with 2010, the decline rate range is from 8.9% to 21.31%. Under scenario 2 of high scheme, it can realize the goal that complete energy intensity of manufacturing industry decreases by 20%. To achieve this goal, China is supposed to promote the development of manufacturing industry in low and medium energy consumption, reduce complete energy consumption of manufacturing industry in high energy consumption, heighten the consumption and import coefficients and lower the investment and export coefficients reasonably. This paper is beneficial to government departments to formulate scientific and systematic policy of energy conservation and emission reduction and conducive to deepening energy economic and management theory.
[1] Leontief W W. Quantitative input and output relations in the economic system of the United States[J].Review of Economic Statistics,1936,18(3):105-125.
[2] Leontief W W.Dynamic analysis,in studies in the Structure of the American Economy[M].New York:Oxford University Press,1953.
[3] Dorfman S,Samuelson P A. Linear programming and economic growth[M].The Economic Analysis NewYork:MCGraw-Hill,1958.
[4] Luptáěcik M,Böhm B. An environmental input-output model with multiple criteria[J].Annals of Operations Research,1994,54(1):119-127.
[5] Cristobal J S. An environmental/input-output linear program-ming model to reach the targets for greenhouse gas emissions set by the Kyoto Protocol[J].Economic System Research,2010,22(3):223-236.
[6] 王铮,冯皓洁,许世远. 中国经济发展中的水资源安全分析[J]. 中国管理科学,2001,9(4):47-56.
[7] 何静,陈锡康. 水资源影子价格动态投入产出优化模型研究[J]. 系统工程理论与实践,2005,5(5):49-54.
[8] 马仪亮,刘起运. 经济增长与节能降耗双目标实现的艰巨性[J].山西财经大学学报,2008,30(9):34-39.
[9] 席酉民,刘洪涛,郭菊娥.能源投入产出分式规划模型的构建与应用[J].科学学研究,2009,(4):535-540.
[10] 张炎治,聂锐,冯颖.基于投入产出非线性模型的能源强度情景优化[J].自然资源学报,2010,(8):1267-1273.
[11] 唐志鹏,刘卫东,付承伟,等.能源约束视角下北京市产业结构的优化模拟与演进分析[J].资源科学,2012,34(1):29-34.
[12] 夏炎,杨翠红.基于投入产出优化方法的行业节能潜力和节能目标分析[J].管理评论,2010,22(6):93-99.
[13] Wright D J. Energy budgets. Ⅲ. Goods and services:An input-output analysis[J].Energy Policy 1974,2(4):307-315.
[14] Wei Yiming,Liang Qiaomei,Fan Ying,et al. A scenario analysis of energy requirements and energy intensity for China's rapidly developing society in the year 2020[J]. Technological Forecasting and Social Change,2006,73(4):405-421.
[15] Fredrich K,David R H.Growth and structural change in China's energy economy.[J]. Energy,2009,34(7):894-903.
[16] Liu Hongtao,Xi Youmin,Guo Jue,et al.Energy embodied in the international trade of China:An energy input-output analysis[J].Energy Policy,2010,38(8):3957-3964.
[17] 刘洪涛,席酉民,郭菊娥,等.能源社会核算矩阵模型的构建与应用[J].中国管理科学,2010,18(1):168-174.
[18] 廖明球.基于"节能减排"的投入产出模型研究[J].中国工业经济,2011,(7):26-34.
[19] 蔡圣华,牟敦国,方梦祥.二氧化碳强度减排目标下我国产业结构优化的驱动力研究[J].中国管理科学,2011,19(4):167-173.
[20] 闾浩,周德群,周鹏. 基于能源投入产出分析的节能减排政策研究[J]. 北京理工大学学报(社会科学版),2013,(4):34-41.
[21] 韩强,刘正林.基于总量控制的工业领域能源分配双层规划模型[J].中国管理科学,2013,21(2):168-174.
[22] Liu F L,Ang B W. Eight methods for decomposing aggregate energy-intensity of industry[J].Applied Energy,2003,76(1):15-23.
[23] Schipper L,Murtishaw S,et al. Carbon emissions from manufacturing energy use in 13IEA countries long-term trends through 1995[J].Energy Policy,2001(29):667-688.
[24] Ang B W,Choi K H. Decomposition of aggregate energy and gas emission intensities for industry:A refined divisia index method[J]. Energy,1997,18(3):59-73.
[25] Ang B W,Zhang F Q. Inter-regional comparisons of energy-related CO2 emissions using the decomposition technique[J].Energy,1999,24(4):297-305.
[26] Sun J W. Energy demand in the fifteen European union countries by a forecasting model based on the decomposition approach[J].Energy,2001,26(6):549-560.
[27] Ang B W,Liu Na. Nagative-value problems of the logarithmic mean divisia index decomposition approach[J].Energy Policy,2007,35(1):739-742.
[28] Zhou Peng,Ang B W, Poh K L. A survey of data envelopment analysis in energy and environmental studies[J]. European Journal of Operational Research,2008,189(1):1-18.
[29] Sun J W. An analysis of the difference in CO2 emission intensity between Finland and Sweden[J]. Energy,2000,25(11):1139-1146.
[30] Alcántara V,Duarte R. Composition of Energy Intensities in European Union Countries:Results of Structural Decomposition Analysis[J]. Energy Policy,2004,32(2):177-189.
[31] 王玉潜.能源消耗强度变动的因素分析方法及其应用[J].数量经济技术经济研究,2003,(8):151-154.
[32] 刘畅,孔宪丽,高铁梅. 中国工业行业能源消耗强度变动及影响因素的实证分析[J].资源科学,2008,30(9):1290-1299.