主管:中国科学院
主办:中国优选法统筹法与经济数学研究会
   中国科学院科技战略咨询研究院
论文

基于半鞅过程的中国股市随机波动、跳跃和微观结构噪声统计特征研究

展开
  • 中央财经大学管理科学与工程学院, 北京 100081

收稿日期: 2015-06-01

  修回日期: 2015-10-13

  网络出版日期: 2016-05-24

基金资助

国家自然科学基金资助项目(71271223,70971145);教育部新世纪人才支持计划(NECT-13-1054)

Analysis of the Finer Statistical Characteristics of China Stock Market Based on Semimartingales Process

Expand
  • School of Management Science and Engineering, Central University of Finance and Economics, Beijing 100081, China

Received date: 2015-06-01

  Revised date: 2015-10-13

  Online published: 2016-05-24

摘要

本文基于半鞅过程和非参数统计推断方法,利用已实现幂变差的渐进统计特性,构造检验统计量,在统一的分析框架下,对金融资产价格中随机波动、跳跃和微观结构噪声等问题进行全面系统的研究。并根据上海证券交易所不同行业的股票,上证50 股票指数及其成分股的高频数据进行实证研究。结果表明,我国A 股市场中,噪音交易显著;约43%的风险来源于资产收益过程的随机波动风险,可用股票期权交易对冲;不同来源风险的重要性程度依次为:随机波动的风险、系统性跳跃风险以及异质性跳跃风险;流动性越好的股票越显示出跳跃、尤其是无限小跳的证据。

本文引用格式

刘志东, 严冠 . 基于半鞅过程的中国股市随机波动、跳跃和微观结构噪声统计特征研究[J]. 中国管理科学, 2016 , 24(5) : 18 -30 . DOI: 10.16381/j.cnki.issn1003-207x.2016.05.003

Abstract

In this paper the different asymptotic behavior of the power variations is exploited as the power p, the truncation level and the sampling frequency are varying,and test statistics is developed on the realized power variation, then a systematic econometric analysis of stochastic volatility,jump and noise existing in high frequency financial returns is given based on Semimartingales Process, asset returns sampled at high frequency are decomposed into their base components (continuous, small jumps, large jumps), the relative magnitude of the components is determined, considering market microstructure noise. The methodology is applied to individual stock returns from different industries, those with different liquidity as well as stock index returns and its constituent stocks. Our results show that noisy traders exist widely in CSM; 43% risk results from stochastic volatility risk in asset return process, possibly hedged by equity option; the importance order of risk from different sources is stochastic volatility, systemic jump and heterogeneous jump; more liquid equities have more significant proof of jump, especially infinite small jumps.

参考文献

[1] Barndorff-Nielsen O E, Shephard N. Power and bipower variation with stochastic volatility and jumps[J]. Journal of Financial Econometrics,2004, 2(1):1-48.

[2] Jacod J. Asymptotic properties of realized power variations and related functionals of semimartingales[J]. Stochastic Processes and their Applications, 2008,118(4):517-559.

[3] Mancini C. Estimating the integrated volatility in stochastic volatility models with Levy type jumps[J]. Astronomy & Astrophysics,2006.

[4] Mancini C. Non parametric threshold estimation for models with stochastic diffusion coefficients and jumps[J].Scandinavian Journal of Statistics, 2009, 36(2):270-296

[5] Zhang Lan.Efficient estimation of stochastic volatility using noisy observations:A multi-scale approach[J].Bernoulli,2006, 12(6):1019-1043.

[6] Zhang Lan, Mykland P A, Xt-Sahalia P A.A tale of two time scales:Determining integrated volatility with noisy high frequency data[J].Journal of the American Statistical Association,2005, 100(472):1394-1411.

[7] Barndorff-Nielsen O E, Hansen P R, Lunde A, et al.Designing realised kernels to measure the ex-post variation of equity prices in the presence of noise[J].Econometrica, 2008,76(6):1481-1536.

[8] Zhou Bin.High-frequency data and volatility in foreign-exchange rates[J]. Journal of Business and Economic Statistics, 1996,14(1):45-52.

[9] Jacod J, Li Yinqing, Mykland P A, et al.Microstructure noise in the continuous case:The pre-averaging approach[J].Stochastic Processes and their Applications, 2009,119(7):2249-2276.

[10] Podolskij M, Vetter M.Estimation of volatility functionals in the simultaneous presence of microstructure noise and jumps[J].Bernoulli, 2009,15(3):634-658.

[11] Andersen T G, Bollerslev T, Diebold F X, et al.The distribution of realized stock return volatility[J].Journal of Financial Economics,2001, 61(1):43-76.

[12] Bandi F M,Russell J R.Microstructure noise, realized variance, and optimal sampling[J]. Review of Economic Studies, 2006,75(2):339-369.

[13] Bollen B, Inder B.Estimating daily volatility in financial markets utilizing intraday data[J].Journal of Empirical Finance,2002, 9(5):551-562.

[14] Hansen P R, Large J, Lunde A.Moving average-based estimators of integrated variance[J].Econometric Reviews, 2008,27(1-3):79-111.

[15] Corsi F, Zumbach G, Müller U A. Consistent high-precision volatility from high-frequency data[J].Economic Notes, 2001,30(2):183-204.

[16] Fan Jianqing, Wang Yazhen. Multi-scale jump and volatility analysis for high-frequency financial data[J].Journal of the American Statistical Association,2007, 102(480):1349-1362.

[17] Barndorff-Nielsen O E, Shephard N.Econometrics of testing for jumps in financial economics using bipower variation[J].Journal of Financial Econometrics,2006, 4(1):1-30.

[18] Jiang G J, Oomen R C A.Testing for jumps when asset prices are observed with noise a "swap variance" Approach[J].Journal of Econometrics,2008, 144(2):352-370.

[19] Lee S S,Mykland P A.Jumps in financial markets:A new nonparametric test and jump dynamics[J]. Review of Financial studies, 2008,21(6):2535-2563.

[20] Aït-Sahalia Y, Jacod J. Testing for jumps in a discretely observed process[J]. Annals of Statistics, 2009b,37(1):184-222.

[21] 胡素华, 张世英, 张彤. 双指数跳跃扩散模型的MCMC估计[J]. 系统工程学报, 2006, 21(2):113-118.

[22] 任枫, 汪波, 段晶晶. 非对称双指数跳跃扩散模型的MCMC估计[J]. 系统工程, 2009, 27(7):39-42.

[23] 马宇超, 陈敏, 蔡宗武,等.中国股市权证定价的带均值回归跳跃扩散模型[J]. 系统工程理论与实践,2010,30(1):14-21.

[24] 曹宏铎, 李旲, 何智. 股票价格运行的幂律特征及幂律跳跃扩散模型[J]. 管理科学学报, 2011, 14(9):46-59.

[25] 陈国进, 王占海. 我国股票市场连续性波动与跳跃性波动实证研究[J]. 系统工程理论与实践,2010,30(9):1554-1561.

[26] 杨科, 陈浪南. 基于C_TMPV的中国股市高频波动率的跳跃行为研究[J].管理科学, 2011, 24(2):103-112.

[27] 唐勇, 张伯新. 基于高频数据的中国股市跳跃特征实证分析[J].中国管理科学, 2013, 21(5):29-39.

[28] 欧丽莎, 袁琛, 李汉东. 中国股票价格跳跃实证研究[J]. 管理科学学报, 2011, 14(9):60-66.

[29] 马丹, 尹优平. 噪声, 跳跃与高频价格波动——基于门限预平均实现波动的分析[J]. 金融研究, 2012(4):124-139.

[30] 唐勇, 寇贵明. 股票市场微观结构噪声, 跳跃, 流动性关系分析[J].中国管理科学, 2012,20(2):11-19.

[31] Aït-Sahalia Y, Mykland P A, Zhang Lan. How often to sample a continuous-time process in the presence of market microstrutcture noise[J].Review of Financial Studies,2005,18(2):351-416.

[32] Aït-Sahalia Y, Jacod J. Estimating the degree of activity of jumps in high frequency data[J].The Annals of Statistics, 2009a,37(5A):2202-44.

[33] Aït-Sahalia Y, Jacod J. Is brownian motion necessary to model high-frequency data[J].The Annals of Statistics, 2010, 38(5):3093-3128.

[34] Aït-Sahalia Y, Jacod J. Testing whether jumps have finite or infinite activity[J].The Annals of Statistics, 2011,39(3):1689-1719.

[35] Aït-Sahalia Y, Mykland P A, Zhang Lan.Ultra high frequency volatility estimation with dependent microstructure noise[J]. Journal of Econometrics,2011,160(1):160-175.

[36] Aït-Sahalia Y, Jacod J.Analyzing the spectrum of asset returns:Jump and volatility components in high frequency data[J]. Journal of Economic Literature, 2012, 50(4):1007-1050.

[37] Merton R C. Option pricing when underlying stock returns are discontinuous[J].Journal of Financial Economics,1976,3(1-2):125-44.

[38] Ball C A, Torous W N. A simplified jump process for common stock returns[J].Journal of Financial and Quantitative Analysis,1983, 18(1):53-65.

[39] Bates D S. The crash of '87:Was it expected? The evidence from options markets[J].The Journal of Finance,1991,46(3):1009-1044.

[40] Darrell D, Pan Jun, Singleton K.Transform analysis and asset pricing for affine jump-diffusions[J].Econometrica,2000,68(6):1343-76.

[41] Barndorff-Nielsen O E. Normal inverse gaussian distributions and stochastic volatility modelling[J].Scandinavian Journal of Statistics,1997, 24(1):1-13.

[42] Barndorff-Nielsen O E. Processes of normal inverse gaussian type[J].Finance and Stochastics,1997, 2(1):41-68.

[43] Carr P, Geman H, Madan D B,et al. The fine structure of asset returns:An empirical investigation[J].The Journal of Business,2002, 75(2):305-32.

[44] Carr P, Wu Liuren. The finite moment log stable process and option pricing[J].Journal of Finance, 2003, 58(2):753-77.

[45] Carr P, Wu Liuren. Time-changed Levy processes and option pricing[J].Journal of Financial Economics,2004,71(1):113-41.

[46] Mancini C. Disentangling the jumps of the diffusion in a geometric jumping brownian motion[J].Giornale dell'Istituto Italiano Attuari,2001,64:19-47.

[47] Huang Xin, Tauchen G. The relative contribution of jumps to total price variance[J]. Journal of Financial Econometrics,2005,3(4):456-99.

[48] Andersen T G. Tim Bollerslev, and Francis X.Diebold. Roughing it up:Including jump components in the measurement, modeling, and forecasting of return volatility[J].Review of Economics and Statistics,2007,89(4):701-720.

[49] Cont R, Mancini C. Nonparametric tests for pathwise properties of semimartingales[J].Bernoulli,2011,17(2):781-813.

[50] Todorov V, Tauchen G. Activity signature functions for high-frequency data analysis[J].Journal of Econometrics,2010, 154(2):125-38.

[51] Belomestny D. Spectral estimation of the fractional order of a Levy process[J].The Annals of Statistics,2010,38(1):317-51.

[52] Hasbrouck J. Assessing the quality of a security market:A new approach to transaction-cost measurement[J].Review of Financial Studies,1993,6(1):191-212.
文章导航

/