在MTO(按订单生产)和MTS(按库存生产)两种模式下,比对了信息不对称和信息共享下产品定价、废旧品回收率和零售商利润的区别,研究结果显示:(1) 产品定价、废旧品回收率和零售商利润不受生产模式改变的影响;(2) 在某些条件下,信息共享下产品的批发价、零售价、和废旧品回收率均高于信息不对称时的相应值,进行信息共享会增加闭环供应链的总体利润,但零售商有可能通过信息共享丧失信息优势,从而使得其利润受损。因此为了促使零售商参与信息共享,信息共享参与方应投资建立安全的通信系统,以保证共享信息不被泄露。另外本文通过引入纳什讨价还价模型建立了一个公平的利润划拨机制,该机制使得最后的利润划分只取决于各参与方的议价能力,与各参与方对通信系统投资大小无关。
A decentralized distribution closed-loop channel is considered.The manufacturer is the stackelberg leader of the channel, who has incorporated a remanufacturing process for used products into her original production system, so that she can manufacture a new product directly from raw materials, or remanufacture part or whole of a returned unit into a new product.Facing random demand of a single product with a short life cycle, a setting where the retailer has accurate demand information while the manufacturer does not is considered.Under the asymmetric and complete information condition, the product pricing, the recovery rate and the retailer's profit in make-to-order scenario and make-to-stock scenario respectively are compared.It is found that:(1) the product pricing, the recovery rate and the retailer's profit are not affected by the change of the production mode; (2) In some conditions, information sharing would increase the whole supply chain profit, but the retailer would lose the information superiority so that his profit would decrease.In order to attract the retailer to share his private information, the manufacturer and the retailer can invest to establish a security communication system jointly to assure to reach the demand information won't be revealed.Then the whole revenue of the closed-loop supply chain will be more than that in asymmetric information.For ensuring an information sharing equilibrium and an fairly revenue allocation, a nash bargain model is proposed, in which the manufacturer and the retailer not only get back the communicaiton investment cost, but also get more profit decided by their bargain power respectively and is independent of the amount of the communication system investment.
[1] Bayindir Z P, N Erkip, R Güllü.Assessing the benefits of remanufac-turing option under one-way substitution and capacity constraint[J].Computers& OperationsResearch, 2007, (34):487-514.
[2] 王玉燕.基于产品生命周期理论的直销型闭环供应链的广告策略与定价策略[J].系统管理学报,2014,23(3):388-396.
[3] Fleischmann M, Bloemhof Ruwaard J M,Dekker R, et al.Quantitative models for reverse logistics:A review[J].European Journal of Operational Research, 1997, 103(1):1-17.
[4] 张克勇,候世旺,周国华.公平关切下闭环供应链定价策略[J].系统管理学报,2013,22(6):841-849.
[5] Hsieh C C, Wu Chenghan, Huang Yajing.Ordering and pricing decisions in a two-echelon supply chain with asymmetric demand information[J].European Journal of Operational Research, 2008, 190(2):509-525.
[6] Cai Gangshu, Zhang Z G, Zhang M. Game theoretical perspectives on dual-channel supply chain competition with price discounts and pricing schemes[J].International Journal of Production Economics,2009,117(1):80-96.
[7] Mukhopadhyay S K, Yue Xiaohang, Zhu Xiaowei. A Stackelberg model of pricing of complementary goods under information asymmetry[J].International Journal of Production Economics, 2011, 134(2):424-433.
[8] Yan Ruiliang, Pei Zhi. Information asymmetry, pricing strategy and firm's performance in the retailer-multi-channel manufacturer supply chain[J].Journal of Business Research, 64(2):377-384.
[9] Raju J, Roy A. Market information and firm performance[J].Management Science, 2000, 46(8):1075-1084
[10] 艾兴政,唐小我,马永开.传统渠道与电子渠道预测信息分享的绩效研究[J].管理科学学报,2008,11(1):12-21.
[11] 熊中楷,张洪艳.不对称信息下闭环供应链的定价策略[J].工业工程,2009,12(3):39-42.
[12] Zhang Pan,Xiong Yu,Xiong Zhongkai, et al.Designing contracts for a closed-loop supply chain under information asymmetry[J].2014,42(2):150-155.
[13] Yue Xiaohang, Liu J.Demand forecast sharing in a dual-channel supply chain[J].European Journal of Operational Research,2006, 174(1):646-667.
[14] 聂佳佳.需求信息预测对制造商回收再制造策略的价值[J].管理科学学报, 2014, 17(1):35-47.
[15] Winkler R L.Combining probability distributions from dependent information sources[J].Management Science, 1981, 27(4):479-488.
[16] Lee H L, So K C.Tang, The value of information sharing in a two-level supply chain.Management Science[J].2000, 46(5):626-643.
[17] Bagchi P K,Skjoett-Larsen T.Supply Chain integration:A European survey[J].International Journal of Logistics Management, 2005, 16(2):275-294.
[18] Viswanathan S,Widiarta H,Piplani R. Value of information exchange and synchronizaion in a multi-tier supply chain[J].International Journal of Production Research, 2007, 45(21):5057-5074.
[19] Stadtler H.A framework for collaborative planning and state-off-the-art[J].Operation Research Spectrum 2009, 31(1):5-30.
[20] Atallah M J, Elmongui H G,Deshpande V,et al. Secure supply-chain protocols[C]//Proceedings of IEEE Internation Conference on E-Commerce,Newport Beach,CA,USA,June 24-27,2003.
[21] 鲁芳, 仲伟俊, 张玉林. 成本信息保护下的安全供应链联合订货决策[J]. 管理工程学报,2009,23(4):163-165.
[22] 董绍辉, 西宝, 田丽娜. 基于安全多方计算的供应链产能分配机制[J]. 华东经济管理, 2009, 23(5):82-84.
[23] 谢翠华, 仲伟俊, 张玉林. 私有信息保护的多零售商联合订货研究[J]. 统计与决策, 2009, 288(12):47-50.
[24] 谢翠华, 仲伟俊, 张玉林. 私有信息保护的多产品联合订货研究[J]. 统计与决策, 2009, 294(18):50-53.
[25] Clifton C. Anapporach to securely identifying beneficial collaboration in decentralized logistics systems[J].Manufacturing and Service Operations Management, 2008, 10(1):108-125.
[26] Pibernil R, Zhang Yingying.Secure collaborative supply chain planning and inverse optimization-The JELS model[J].European Journal of Operational Research, 2011,208(1):75-85.