主管:中国科学院
主办:中国优选法统筹法与经济数学研究会
   中国科学院科技战略咨询研究院
论文

一类高新技术企业专利权价值的实物期权评估方法——基于跳扩散过程和随机波动率的美式期权的建模与模拟

展开
  • 1. 中南财经政法大学金融学院, 湖北 武汉 430073;
    2. 上海微化投资管理咨询有限公司, 上海 201204;
    3. 中南财经政法大学知识产权研究中心统计与数学学院, 湖北 武汉 430073

收稿日期: 2014-08-01

  修回日期: 2015-08-24

  网络出版日期: 2016-07-05

基金资助

国家社会科学基金资助项目(10BJY104);国家自然科学基金资助项目(11526193)

The Study of Real Option Valuation Method on the Patent Value in the High Technology Firms: Modelling and Simulation of American Optionwith Jump Diffusion and Stochastic Volatility

Expand
  • 1. School of Finance, Zhongnan University of Economics and Law, Wuhan, 430073, China;
    2. Shanghai Micro-investment Management Consulting Co. Ltd, Shanghai, 201204, China;
    3. Center for Studies of Intellectual Property Righs, School of Statistics and Mathematics, Zhongnan University of Economics and Law, Wuhan, 430073, China

Received date: 2014-08-01

  Revised date: 2015-08-24

  Online published: 2016-07-05

摘要

由于经典的Black-Scholes期权定价模型的假设忽略了突发事件对资产价格的影响和"波动率微笑"对期权价值的影响而与实际情形往往存在偏差,因此学者们对Black-Scholes模型的改进则主要分别集中在带跳扩散过程的期权定价模型与具随机波动率的期权定价模型等两个方面,然而却少见将这两种模型结合起来的研究。本文首先在带跳扩散过程的期权定价模型与具随机波动率的期权定价模型的研究工作的基础上,建立了一种同时带跳扩散过程和具随机波动率的美式期权定价模型,并通过伊藤引理推导出了资产价格、随机波动率和期权满足的偏微分方程;然后,利用特征函数法和傅里叶变换导出了资产价格的随机分布,进而通过马尔科夫链方法给出了基于跳扩散过程和随机波动率的美式期权的数值解;最后,运用已建立的带跳扩散过程和随机波动率的美式期权定价模型对高新技术企业项目投资的专利权价值进行实物期权定价评估的案例研究,并对跳扩散强度参数和随机波动率参数进行敏感性分析,研究结果表明:将项目收益跳扩散过程和市场环境随机波动率加入到专利权实物期权定价模型中,可以有效避免专利权的期权价值被高估。

本文引用格式

周艳丽, 吴洋, 葛翔宇 . 一类高新技术企业专利权价值的实物期权评估方法——基于跳扩散过程和随机波动率的美式期权的建模与模拟[J]. 中国管理科学, 2016 , 24(6) : 19 -28 . DOI: 10.16381/j.cnki.issn1003-207x.2016.06.003

Abstract

Since the hypotheses of the classical Black-Scholes option pricing model ignore the impact of sudden change on asset prices and the "volatility smile" on the option value, particularly, it deviates from the actual situations. Many improvements of the Black-Scholes model are based on two directions: one is the option pricing model with jump-diffusion, and the other is the option pricing model with stochastic volatility. But very few researches combine these two factors into a model. In this paper, based on the previous work of the option pricing model with jumps or stochastic volatility, an improved option pricing model is firstly constructed by taking into account jump diffusion and stochastic volatility at the same time. The corresponding partial differential equation of the asset pricing, stochastic volatility and option pricing is derived by Ito lemma. Then, the stochastic distribution of asset price is obtained by the characteristic function method and Fourier transform approach. The numerical solution of the American option with jump diffusion and stochastic volatility is obtained by employing the Markov Chain approach. Finally, by the empirical research, the real option price of the patent of the project investment in a high-tech company is evaluated by using our developed model, and the effects of value changes of jump diffusion strength parameters and stochastic volatility parameters on the value of the patent option price are reported. It is concluded that the overvaluation of the patent option price, due to the ignorance of the uncertainty of the financial market, can be avoided effectively by introducing the jump-diffusion process of project profit and the stochastic volatility of market environment into the patent real option pricing model.

参考文献

[1] 陈萍, 杨孝平. 有随机波动率及定期分红和配股时美式看涨期权的定价[J]. 应用概率统计, 2005, 21(1):81-87.

[2] 陈超, 邹捷中, 刘国买. 股票价格服从跳扩散过程的期权定价模型[J]. 管理工程学报, 2001, 15(2):74-75.

[3] 冯广波, 刘再明. 服从跳扩散过程的再装股票期权的定价[J]. 系统工程学报, 2003, 18(1):91-93.

[4] 郑德渊. 基于跳跃过程的复合期权定价模型[J]. 中国管理科学, 2004,12(1):15-19.

[5] 钱晓松. 跳扩散模型中的测度变换与期权定价[J]. 应用概率统计, 2004, 20(1):91-99.

[6] 吴恒煜, 陈金贤. 基于价格随机波动率的衍生产品期权定价[J]. 西安交通大学学报, 2005, 39(2):214-217.

[7] 肖建武, 尹希明. 待遇预定制养老基金资产组合与缴费计划最优决策-基于随机波动率Heston模型及Legendre对偶变换法[J]. 中国管理科学, 2015, 23(3):42-46.

[8] 杨招军, 黄立宏. 随机波动率与跳组合情形的期权问题闭式解[J]. 应用慨率统计, 2004, 20(3):229-233.

[9] Amin K. Jump diffusion option valuation in discrete time[J]. Journal of Finance, 1993, 48(48):1833-1863.

[10] Amin K, Khanna A. Convergence of American option values from discrete to continuous-time financial models[J]. Mathematical Finance, 1994, 4(4):289-304.

[11] Andersen L, Andreasen J. Jump-diffusion processes:Volatility smile fitting and numerical methods for option pricing[J]. Review of Derivatives Research, 2000, 4(3):231-262.

[12] Black F, Scholes M. The pricing of options and corporate liabilities[J]. Journal of Political Economy, 1973, 81(3):637-659.

[13] Buffington J, Elliott R J. American options with regime switching[J]. International Journal of Theoretical and Applied Finance, 2002, 5(5):497-514.

[14] Chiarella C, Ziogas A. American call options under jump-diffusion processes:A Fourier transform approach[J]. Applied Mathematical Finance, 2009, 16(1):37-79.

[15] Duan Jinchuan, Simonato J G. American option pricing under GARCH by a Markov chain approximation[J]. Journal of Economic Dynamics and Control, 2001, 25(11):1689-1718.

[16] Duan Jinchuan, Dudley E. Pricing discretely monitored barrier options by a Markov chain[J]. The Journal of Derivatives Summer, 2003, 10(4):9-31.

[17] Eisenberg L, Jarrow R. Option pricing with random volatilities in complete markets[J]. Review of Quantitative Finance and Accounting, 1994, 4(1):5-17.

[18] Heston S L. A closed form solution for options with stochastic volatility with applications to bond and currency options[J]. Review of Financial Studies, 1993, 6(2):327-343.

[19] Hull J, White A. The pricing of options on assets with stochastic volatilities[J]. Journal of Finance, 1987, 42(2):281-300.

[20] Ingersoll J E. Theory of financial decision making[M]. Lanham, Maryland. Rowman and Littlefield, 1987.

[21] Cox J C, Ross S A, Rubinstein M. Option pricing:A simplified approach[J]. Journal of Financial Economics, 1979, 7(3):229-263.

[22] Jobert A, Rogers L. Option pricing with Markov modulated dynamics[J]. SIAM Journal on Control and Optimization, 2006, 44(6):2063-2078.

[23] Kou S. A jump-diffusion model for option pricing[J]. Management Science, 2002, 48(8):1086-1101.

[24] Kijima M, Komoribayashi K. A Markov chain model for valuing credit risk derivatives[J]. Journal of Derivatives, 1998, 6(1):97-108.

[25] Longstaff, Schwartz E S. Valuing American options by simulation:A simple least-squares approach[J]. Review of Financial Studies, 2001, 14(1):113-147.

[26] Merton R C. Option pricing when the underlying process for stock returns is discontinuous[J]. Journal of Financial Economics, 1976, 3(1-2):124-144.

[27] Meyer G. The numerical valuation of options with underlying jumps[J]. Acta Mathematica, 1998, 67(1):69-82.

[28] Monoyios M. Option pricing with transaction costs using a Markov chain approximation[J]. Journal of Economic Dynamics and Control, 2004, 28(5):889-913.

[29] Stein E M, Stein S J. Stock price distributions with stochastic volatility:An analytic approach[J]. Review of Financial Studies, 1991, 4(4):727-752.

[30] Schwartz E S. The valuation of warrants:Implementing a new approach[J]. Journal of Financial Economics, 1977, 4(1):79-93.

[31] Scott L O. Option pricing when the variance changes randomly:Theory, estimation and an application[J].Journal of Financial and Quantitative Analysis, 1987, 22(4):419-438.

[32] Wiggins J B. Option values under stochastic volatility:theory and empirical estimates[J]. Journal of Financial Economics, 1987, 19(2):351-372.

[33] Guo Xin, Shepp L. Some optimal stopping problem with non-trivial boundaries for pricing exotic options[J]. Journal of Applied Probability, 2001, 38(3):1-12.

[34] Guo Xin, Zhang Q. Closed-form solutions for perpetual American put options with regime switching[J]. SIAM Journal on Applied Mathematics, 2004, 64(6):2034-2049.

[35] Zipkin P. Mortgages and Markov chains:A simplified evaluation model[J]. Management Science, 1993, 39(6):683-691.
文章导航

/