主管:中国科学院
主办:中国优选法统筹法与经济数学研究会
   中国科学院科技战略咨询研究院
论文

区间信息下的主客方协作式群体评价方法及其应用

展开
  • 南昌大学经济管理学院, 江西 南昌 330031

收稿日期: 2015-06-14

  修回日期: 2015-12-11

  网络出版日期: 2016-07-05

基金资助

国家自然科学基金资助项目(71361021,71001048,71261007);江西省教育厅科技资助重点项目(GJJ150027);江西省社学科学"十二五规划"重点项目(15ZQZD01);江西省学位与研究生教改研究重点项目(JXYJG-2014-002);江西省赣鄱英才555工程项目;江西省青年科学家(井岗之星)项目

A Group Evaluation Method and Application Based on Collaboration of Subject and Object under Interval Information

Expand
  • School of Economics & Management, Nanchang University, Nanchang 330031, China

Received date: 2015-06-14

  Revised date: 2015-12-11

  Online published: 2016-07-05

摘要

目前关于主客方协作式评价问题的研究相对较少且主要是基于点值评价信息的,考虑到评价环境的复杂性与不确定性,本文将点值信息向区间信息方向拓展,探讨了一种新的区间信息下的主客方协作式群体评价方法。本文首先探讨了一种能够较好融合评价信息"质与量"的区间诱导密度加权合成算子-IIDWA;然后以主方信息完备度及客方信息诚信度为诱导分量分别对主客方评价信息进行聚类分组,并从规模和属性两个角度出发分别确定相应的密度加权向量;最后在主客方协作规则下,利用IIDWA算子对主客方区间信息分别进行二维集结,以得出最终综合评价结果。文章最后给出了一个应用算例,算例表明了方法的可行性与有效性。

本文引用格式

张发明, 李小霜 . 区间信息下的主客方协作式群体评价方法及其应用[J]. 中国管理科学, 2016 , 24(6) : 143 -150 . DOI: 10.16381/j.cnki.issn1003-207x.2016.06.017

Abstract

In classical single criterion group evaluation methods, the ratings that experts (the subject) have given for the object evaluated are usually exact data. In addition, the evaluation process is also generally dominated by the subject with lack of the object participation. However, the ratings given are human judgements including preferences that may be vague; using interval data should be more suitable. Otherwise, with the circumstance of emphasizing democracy and freedom, participation of the object (especially when the object is human) in evaluation process is rather essential. Therefore, a group evaluation method based on collaboration of subject and object is put forward under interval information. In this paper, an Interval Induced Density Weighted Algorithm-IIDWA is presented to aggregate interval data. Firstly, completeness of subject information-μand integrity of object information-ωare calculated, by which original interval data are clustered into right group. Secondly, ultimate weight vector of each group are synthesized by their attribute weight vector-ξ? and scale weight vector-ξe, so it will possess the superiority of containing the characteristics of attribute and scale of each group. Finally, information of subject and object are aggregated respectively by IIDWAto obtain interval comprehensive results and then possibility degree approach of interval data is conducted for ranking. In the end, a numerical example is given to illustrate the feasibility and validity of this paper. Meanwhile, the result based on the TOPSIS method with interval data is also calculated in order to compare the existing difference with ranking of this paper. As the result of the two methods show, the ranking is different, which indicates that participation of the object can make contribution to the ranking result. In this paper, the complementation of the subject and object information has been implementated.

参考文献

[1] 郭亚军.综合评价理论、方法及应用[M].北京:科学出版社,2007.

[2] 张发明,郭亚军,易平涛. 一种主客方协作式群体评价方法及其应用[J]. 中国管理科学,2010, 18(04):145-151.

[3] 张发明. 一种主客方交互式群体评价方法及其应用[J]. 管理学报,2011,8(11):1714-1718.

[4] Zhao Hua, Xu Zheshui. Group decision making with density-based aggregation operators under interval-valued intuitionistic fuzzy environments[J]. Journal Of Intelligent & Fuzzy Systems. 2014,27(2):1021-1033.

[5] 董庆兴,郭亚军,马凤妹. 基于主客体协作的群组评价方法[J]. 运筹与管理,2012,21(4):166-172.

[6] Herrera F,Herrera-Viedma E,Verdegay J L. A model of consensus in group decision making under linguistic assessments[J].Fuzzy Sets and Systems,1996,78(1):73-87.

[7] Xia Meimei, Chen Jian. Multi-criteria group decision making based on bilateral agreements[J]. European Journal Of Operational Research. 2015,240(3):756-764.

[8] 易平涛,郭亚军,李伟伟.基于密度算子的多阶段群体评价方法及应用[J]. 东北大学学报(自然科学版), 2013, 2(5):752-756.

[9] Xu Zeshui,Yager P R. Power-geometric operators and their use in group decision making[J]. IEEE Transactions on Fuzzy System, 2010,18(1):94-105.

[10] Zeng Shuozeng, Li Wei, Merigó J M. Extended induced ordered weighted averaging distance operators and their application to group decision-making[J]. International Journal of Information Technology & Decision Making, 2013, 12(4):789-811.

[11] Henningsen D, Henningsen M. A preliminary examination of perceptions of social influence in group decision making in the workplace[J]. Journal Of Business Communication, 2015,52(2):188-204.

[12] Su Weihua, Zeng Shouzheng, Ye Xiaojia. Uncertain group decision making with induced aggregation operators and Euclidean distance[J]. Technological & Economic Development of Economy, 2013, 19(3):431-447.

[13] Li Dengfeng, Huang Zhigang, Chen Guohong. A systematic approach to heterogeneous multiattribute group decision making[J]. Computers & Industrial Engineering. 2010, 59(4):561-572.

[14] 张发明,郭亚军,易平涛.序关系分析下的多阶段交互式群体评价方法[J].系统工程学报, 2011,59(26):702-709.

[15] 余雁,梁樑,罗彪. 基于自互评体系的竞争性评估方法研究[J]. 系统工程,2004,22(5):94-97.

[16] 郭亚军,何志勇,董飞飞. 基于双重优势的自主式综合评价方法[J]. 系统工程与电子技术,2011,33(12):2668-2671.

[17] 董庆兴,郭亚军,何志勇. 基于竞合视角的自主式综合评价方法[J]. 系统管理学报,2012,21(2):180-185.

[18] 徐泽水,达庆利. 区间数排序的可能度法及其应用[J]. 系统工程学报,2003,18(1):67-70.

[19] Jahanshahloo G R,Hosseinzadeh L F,Izadikhah M.An algorithmic method to extend TOPSIS for decision-making problems with interval data[J].Applied Mathematics and Computation,2006,175(2):1375-1384.

[20] 尤天慧,樊治平. 区间数多指标决策中确定指标权重的一种客观赋权法[J]. 中国管理科学,2003,11(2):93-96.

[21] 刘健,刘思峰. 属性值为区间数的多属性决策对象排序研究[J]. 中国管理科学,2010,18(3):90-94.

[22] 吴江,黄登仕. 区间数排序方法研究综述[J]. 系统工程,2004,22(8):1-4.

[23] 孙海龙,姚卫星. 区间数排序方法评述[J]. 系统工程学报,2010,25(3):304-312.

[24] 徐泽水.不确定多属性决策方法及应用[M].北京:清华大学出版社,2004.

[25] 侯芳,郭亚军. 区间数密度中间算子在多属性决策中的应用[J]. 东北大学学报(自然科学版),2008,29(10):1509-1516.

[26] 李伟伟,易平涛,郭亚军. 区间数密度算子及其应用[J]. 东北大学学报(自然科学版),2012,33(7):1043-1046.

[27] 贺芳. 基于改进区间数密度集结算子指标群赋权方法[J]. 运筹与管理,2013,(4):133-138.

[28] 张发明,闻琴,汪红林. 二维区间密度加权算子及其应用[J]. 应用泛函分析学报,2014,16(2):97-104.
文章导航

/