The concept of combination evaluation is an important content in the comprehensive evaluation theory and methodology. In this paper firstly defines the term of recombination evaluation is firstly defined and a recombination evaluation approach is proposed based on the previous evaluation results, which mainly deal with the nonuniformity and poor convergence of the first evaluation results derived from different combination evaluation methods, such as fuzzy borda method, copeland method and maximizing deviation decision method. Then, some key processes and operation steps to conduct this approach are detailedly given, which includes description of comprehensive evaluation problem, description of single evaluation method, description of combination evaluation, consistency analysis of different evaluation results, selection of recombination evaluation method based on minimum drift and convergence analysis of the results of recombination evaluation. Finally, from the numerical examples, it can be seen that the result error of the recombination evaluation is far less than result from any single first combination evaluation. Therefore, the conclusion that the recombination evaluation has better combination results and is more effective can be drawn. The recombination evaluation approach can effectively improve uniformity and convergence of of the first evaluation results derived from different combination evaluation methods, and decrease error of the first combination evaluation results. Ultimately, the reliability of the overall evaluation results can be strengthened. The contribution of this paper includes: 1) firstly proposes and defines the term of recombination evaluation; 2) presents a selection rule of recombination evaluation method based on minimum drift and convergence analysis of the results of recombination evaluation; 3) constructs a methodology architecture to carry out this recombination evaluation approach.
[1] 陈衍泰, 陈国宏, 李美娟. 应用合作博弈确定组合评价权重系数的方法研究[J]. 中国管理科学, 2005, 13(3): 89-94.
[2] Song Wenyan, Ming Xinguo, Wu Zhenyong, et al. Failure modes and effects analysis using integrated weight-based fuzzy TOPSIS[J]. International Journal of Computer Integrated Manufacturing, 2013, 26(12): 1172-1186.
[3] Zhang Hongyu, Ji Pu, Wang Jianqiang,et al. An improved weighted correlation coefficient based on integrated weight for interval neutrosophic sets and its application in multi-criteria decision-making problems[J]. International Journal of Computational Intelligence Systems, 2015, 8(6): 1027-1043.
[4] 闫书丽, 刘思峰, 方志耕,等. 区间灰数群决策中决策者和属性权重确定方法[J]. 系统工程理论与实践, 2014, 34(9): 2372-2379.
[5] Tsyganok V V, Kadenko S V, Andriichuk O V. Significance of expert competence consideration in group decision making using AHP[J]. International Journal of Production Research, 2012, 50(17): 4785-4792.
[6] Qi Xiaowen, Liang Changyong, Zhang Junling. Generalized cross-entropy based group decision making with unknown expert and attribute weights under interval-valued intuitionistic fuzzy environment[J]. Computers & Industrial Engineering, 2015, 79: 52-64.
[7] Sen C G, Cinar G. Evaluation and pre-allocation of operators with multiple skills: A combined fuzzy AHP and max-min approach[J]. Expert Systems with Applications, 2010, 37(3): 2043-2053.
[8] Amado C A F, Santos S P, Marques P M. Integrating the data envelopment analysis and the balanced scorecard approaches for enhanced performanceassessment[J]. Omega-International Journal of Management Science, 2012, 40(3): 390-403.
[9] Govindan K, Kannan D, Shankar M. Evaluation of green manufacturing practices using a hybrid MCDM model combining DANP with PROMETHEE[J]. International Journal of Production Research, 2015, 53(21): 6344-6371.
[10] 李珠瑞, 马溪骏, 彭张林. 基于离差最大化的组合评价方法研究[J]. 中国管理科学, 2013, 21(1): 174-179.
[11] 陈国宏, 李美娟, 陈衍泰. 单一方法评价结论漂移性的测度研究[J]. 中国工程科学, 2004, 6(3): 58-63.
[12] Goodman I R. Evaluation of combinations of conditioned information: A history[J]. Information Sciences, 1991, 57-58: 79-110.
[13] Gregory A. The road to integration. Reflections on the development of organizational evaluation theory andpractice[J]. Omega, 1996, 24(3): 295-307.
[14] Tsai W H, Lee P L, Shen Yushan, et al. A combined evaluation model for encouraging entrepreneurship policies[J]. Annals of Operations Research, 2014, 221(1): 449-468.
[15] 郭亚军, 马赞福, 张发明. 组合评价方法的相对有效性分析及应用[J]. 中国管理科学, 2009, 17(2): 125-130.
[16] 陈国宏, 陈衍泰, 李美娟. 组合评价系统综合研究[J]. 复旦学报(自然科学版), 2003, 42(5): 667-672.
[17] 郭亚军, 易平涛. 一种基于整体差异的客观组合评价法[J]. 中国管理科学, 2006, 14(3): 60-64.
[18] 陈衍泰, 陈国宏, 李美娟. 基于评价方法属性层次的组合评价研究[J]. 中国工程科学, 2005, 7(8): 56-59.
[19] 张荣艳, 孙贵玲, 王爱苹. 组合评价模型在河南省主要城市综合经济实力评价中的应用[J]. 数学的实践与认识, 2013, 43(4): 60-67.
[20] 陈衍泰. 基于方法集的组合评价研究[D]. 福州: 福州大学, 2004.
[21] 李美娟, 陈国宏, 徐林明,等. 基于漂移度的动态组合评价方法研究[J]. 中国管理科学, 2015, 23(1): 141-145.
[22] 柳玉鹏, 李一军. 组合评价方法在银行信用风险评价中的应用[J]. 中国管理科学, 2008, 16(S1): 215-218.
[23] 毛定祥. 一种最小二乘意义下主客观评价一致的组合评价方法[J]. 中国管理科学, 2002, 10(5): 95-97.
[24] 金菊良, 汪明武, 魏一鸣. 客观组合评价模型在水利工程方案选优中的应用[J]. 系统工程理论与实践, 2004,(12): 111-116.
[25] 李惠林, 殷国富, 谢庆生等. 面向网络化制造的制造资源组合评价方法研究[J]. 计算机集成制造系统, 2008, 14(5): 955-961.
[26] 李美娟, 陈国宏, 肖细凤. 基于一致性组合评价的区域技术创新能力评价与比较分析[J]. 中国管理科学, 2009, 17(2): 131-139.
[27] 孙博文, 刘艳春. 基于模糊Borda组合评价法的电力行业上市公司经营绩效评价[J]. 数学的实践与认识, 2013, 43(10): 1-8.
[28] 汪泽焱, 顾红芳, 益晓新,等. 一种基于熵的线性组合赋权法[J]. 系统工程理论与实践, 2003(3): 112-116.
[29] 陈伟, 夏建华. 综合主、客观权重信息的最优组合赋权方法[J]. 数学的实践与认识, 2007, 37(1): 17-22.
[30] 林元庆, 陈加良. 方法群评价中权重集化问题的研究[J]. 中国管理科学, 2002, 10(S1): 20-22.
[31] 杭州商学院省自然科学基金课题组. "序号总和理论"及其在综合经济效益排序中的应用[J]. 数量经济技术经济研究, 1996,(1): 59-62.
[32] 康楠, 郑循刚, 母培松. 基于组合评价的我国区域科技资源配置效率研究[J]. 华中科技大学学报(社会科学版), 2009, 23(6): 79-83.
[33] 李美娟, 陈国宏, 陈勃,等. 基于方法集化的动态组合评价方法研究[J]. 中国管理科学, 2013, 21(2): 132-136.
[34] 易平涛, 高立群, 郭亚军. 基于多源密度信息集结算子的组合评价方法[J]. 系统工程与电子技术, 2009, 31(12): 2882-2887.
[35] 张立军, 陈跃, 袁能文. 基于信度分析的加权组合评价模型研究[J]. 管理评论, 2012, 24(5): 170-176.
[36] 柳玉鹏, 李一军. 基于降维思想的客观组合评价模型[J]. 运筹与管理, 2009, 18(14): 38-43.
[37] 王硕, 杨善林, 胡笑旋. 基于投影寻踪的组合评价方法研究[J]. 中国工程科学, 2008, 10(8): 60-64.
[38] 陈国宏, 李美娟. 组合评价收敛性验证的计算机模拟实验[J]. 系统工程理论与实践, 2005(5): 74-82.
[39] 李美娟, 陈国宏, 戴益军. 基于一致性组合评价的中国工业产业技术创新能力实证研究[J]. 中国科技论坛, 2009,(4): 51-56.
[40] 彭张林, 张强, 李珠瑞,等. 改进的离差最大化决策模型及其在临近空间多任务规划中的应用[J]. 系统工程理论与实践, 2014, 34(2): 421-427.