主管:中国科学院
主办:中国优选法统筹法与经济数学研究会
   中国科学院科技战略咨询研究院
论文

奈特不确定性下的资产及其组合的惰性区间

展开
  • 安徽工程大学管理工程学院, 安徽 芜湖 241000

收稿日期: 2016-03-09

  修回日期: 2016-10-17

  网络出版日期: 2017-03-07

基金资助

国家自然科学基金面上项目(71271003,71171003);教育部人文社会科学研究规划基金项目(12YJA790041)

The Inertia Interval of Asset and Its' Portfolio under the Knight Uncertainty

Expand
  • School of Management Engineering, Anhui Polytechnic University, Wuhu 241000, China

Received date: 2016-03-09

  Revised date: 2016-10-17

  Online published: 2017-03-07

摘要

不确定性是证券市场的基本特征之一,是资产定价和投资者交易行为等研究的主要内容。标准期望效用理论认为投资者具有唯一的资产执行价格,当市场价格高于执行价格时,投资者出售资产;反之,则会购进。然而,源于不确定性的存在,资产的均衡价格或交易价格并非某一确定值而是某一区间;在此区间内,投资者无交易行为,我们称之为资产的惰性区间。本文假定投资者是不确定性规避型,基于可行域上的容度,引入测度奈特不确定性程度的等级参数,研究奈特不确定性下的资产及其组合的惰性区间。基于容度期望效用模型,利用容度代替概率测度表征投资者预期效用,提出奈特不确定性下投资者决策行为的偏好表达式;基于对偶测度构建资产交易的惰性区间,分析奈特不确定性程度与惰性区间的关系;最后,基于Black-Scholes期权定价模型,选择存续期为2008年10月-2011年8月的江铜认购权证和长虹认购权证为研究对象,以其单资产及不同比例资产组合的日收益数据为样本予以实证。结果表明:随着奈特不确定性程度的不断增强(减弱),资产及其组合的惰性区间不断扩大(缩小),市场流动性随之下降(上升);随着奈特不确定性程度的增强,高价格、高波动率的资产及其组合的惰性区间变化更为明显;在适度的奈特不确定性程度范围内,高波动率的资产及其组合的交易相对活跃。研究解释了证券市场上的“非市场参与”之谜和“特质波动率”之谜,说明了证券市场上的“有限市场参与”特征,为资产定价与市场流动性关系的研究提供了参考。

本文引用格式

何朝林, 刘梦 . 奈特不确定性下的资产及其组合的惰性区间[J]. 中国管理科学, 2016 , 24(12) : 39 -46 . DOI: 10.16381/j.cnki.issn1003-207x.2016.12.005

Abstract

Uncertainty is the basic characteristic of security market, and is the main content of asset pricing and investor's trading behavior. The standard expected utility theory shows that an investor has the unique striking price, the market price above which, she is willing to sell; conversely, she is willing to buy. However, due to the existing of uncertainty, asset's equilibrium price or trading price is not a certain value, but is an interval; an investor has no trading behavior within the interval, which is defined as asset's inertia interval. Assuming that the investor is Knight uncertainty aversion, a grade parameter is introduced to measure the degree of Knight uncertainty and the inertia interval of asset and its' portfolio is studied based on the capacity of the feasible region. Based on the model of capacity expected utility(CEU), the preference expression of investor's decision behavior under Knight uncertainty is given by using the capacity instead of the probability measure. Based on the conjugate measure, the inertia interval of asset trading is constructed and the relationship between the degree of Knight uncertainty and the inertia interval is analyzed. At last, based on the model of Black-Scholes option pricing, Jiangtong and Changhong call warrants are selected as the research objects, whose date range is from October 2008 to August 2011, and an empirical study is done based on the daily return of its' underlying asset and different proportion portfolio. Results show that, with the increasing (decreasing) of the degree of Knight uncertainty, the inertia interval of asset and its portfolio expands (shrinks), which results in the declining (rising) of the market liquidity; with the increasing of the degree of Knight uncertainty, the changing of inertia interval is more obvious for the asset and its' portfolio with high price and high volatility; within the moderate rang of Knightian uncertainty, the trading is relatively active for the asset and its' portfolio with high volatility. In the study the puzzles of "non-market participation" and "the idiosyncratic volatility" in the security market are explained, the characteristic of "limited market participation" in the security market is demonstrated, and evidence is provided for the study on the relationship between asset pricing and market liquidity.

参考文献

[1] Arrow K. Aspects of the theory of risk-bearing[M].Helsinki: Yrjo Jahnsson Saatio.1965.

[2] Knight F. Risk, uncertainty and profit[M]. Boston: Houghton Mifflin, 1921.

[3] Gilboa I,Schmeidler D.Maxmin expected utility with non-unique prior[J].Journal of Mathematical Economics, 1989, 18(2): 141-153.

[4] Schmeidler D.Subjective probability and expected utility without additivity[J].Econometrica, 1989, 57(3): 571-587.

[5] Ellsberg D. Risk, ambiguity, and the savage axioms[J].Quarterly Journal of Economics, 1961, 75(4): 643-69.

[6] Dow J, Werlang S R C. Uncertainty aversion, risk aversion, and the Knightian uncertainty[J]. Econometrica, 1992, 60:197-204.

[7] Youichiro H, Sujoy M, Norio T, et al. Comment on "Ellsberg's two-color experiment, portfolio inertia and ambiguity[J].International Journal of Economic Theory, 2008, 4(3):433-444.

[8] Philipp K I. Ambiguous information, portfolio inertia, and excess volatility[J].The Journal of Finance, 2011, 66(6):2213-2247.

[9] Basili M. Knight uncertainty in financial markets: An assessment[J].Economic Notes, 2001, 30(1):1-26.

[10] Marcos E, Barbara G, Daniela N, et al. Pricing two-asset barrier options under stochastic correlation via perturbation[J]. International Journal of Theoretical & Applied Finance,2015, 18(3):1-44.

[11] Wada K. The Knightian uncertainty and the risk premium and the risk free rate puzzles in Japan and the U.S.[J]. Economics Letters, 2007, 95(3): 386-393.

[12] Chen Yan, Katuscak P, Ozdenoren E. Sealed bid auctions with ambiguity: theory and experiments[J]. Journal of Economic Theory, 2007,136(1):513-535.

[13] 韩立岩,周娟. Knight不确定环境下基于模糊测度的期权定价模型[J].系统工程理论与实践,2007, 27(12):123-132.

[14] 韩立岩,潘敏. 基于奈特不确定性随机波动率期权定价[J].系统工程理论与实践.2012, 32(6): 1175-1183.

[15] 何朝林,孟卫东. 不确定性规避下的动态资产组合选择[J].系统工程学报.2009, 24(2):150-155.

[16] 何朝林. 均值-方差模型具有一般不确定性下的最优资产组合选择[J]. 中国管理科学, 2015, 23(12):63-70.

[17] 高金窑. 奈特不确定性与非流动资产定价:理论与实证[J]. 经济研究, 2013, (10):82-97.

[18] 文凤华, 肖金利, 黄创霞,等. 投资者情绪特征对股票价格行为的影响研究[J].管理科学学报, 2014, 17(3):60-69.

[19] 高大良, 刘志峰, 杨晓光. 投资者情绪、平均相关性与股市收益[J]. 中国管理科学, 2015, 23(2):10-20.

[20] 陆静, 周媛. 投资者情绪对股价的影响——基于AH股交叉上市股票的实证分析[J]. 中国管理科学, 2015, 23(11):21-28.

[21] 陈鹏程, 周孝华. 机构投资者私人信息、散户投资者情绪与IPO首日回报率[J]. 中国管理科学, 2016, 24(4):37-44.

[22] 孔东民,孔高文,刘莎莎.机构投资者、流动性与信息效率[J].管理科学学报,2015,18(3):1-15.

[23] 王春峰, 余思婧, 房振明, 等.中国证券市场Knight不确定性度量及资产定价研究[J].系统工程理论与实践.2015, 35(5):1116-1122.

[24] Choquet G. Theory of capacities[J].Annales de l'institut Fourier. Institut Fourier, 1954,5:131-295.

[25] Chateauneuf A. On the use of capacities in modeling uncertainty aversion and risk aversion[J].Journal of Mathematical Economics, 1991, 20(4):343-369.

[26] Epstein L G,Wang Tan.Intermporal asset pricing under Knightian uncertainty[J]. Econometrica,1994,62(2): 283-322.

[27] 张惠,聂秀山. Knight不确定环境下欧式股票期权的最小定价模型[J]. 山东大学学报(理学版), 2007,42(11): 121-126.
文章导航

/