主管:中国科学院
主办:中国优选法统筹法与经济数学研究会
   中国科学院科技战略咨询研究院
论文

基于非参数核估计方法的均值-VaR模型

展开
  • 1. 广东财经大学金融学院, 广东 广州 510320;
    2. 中山大学管理学院, 广东 广州 510275

收稿日期: 2016-07-13

  修回日期: 2017-01-12

  网络出版日期: 2017-08-26

基金资助

国家自然科学基金资助项目(71231008,71603058,71573056);教育部人文社会科学研究项目(16YJC790033);广东省自然科学基金项目(2016A030313656,2015A030313629,2014A030310305);广东省哲学社会科学规划项目(GD15YYJ06,GD15XYJ03);广州市哲学社会科学规划项目(15Q20);广州市社会科学界联合会2016年"羊城青年学人"研究项目(16QNXR08)

A Mean-VaR Portfolio Selection Model based on Nonparametric Kernel Estimation Method

Expand
  • 1. School of Finance, Guangdong University of Finance & Economics, Guangzhou 510320, China;
    2. Sun Yat-Sen Business School, Sun Yat-Sen Universtiy, Guangzhou 510275, China

Received date: 2016-07-13

  Revised date: 2017-01-12

  Online published: 2017-08-26

摘要

本文运用非参数核估计方法对资产组合的在险价值(Value at Risk,VaR)进行估计,得到VaR的非参数核估计公式,并基于VaR的非参数核估计公式建立投资组合选择模型。理论上该模型的目标函数具有良好的光滑性,便于优化问题求解。Monte Carlo模拟结果表明该模型具有大样本性质,估计误差会随着样本容量的增大而下降,且该模型在非对称和厚尾分布下的表现优于当前文献中常用的经验分布法和Cornish-Fisher展开法。基于我国上证50指数及其成份股实际数据的实证结果说明该模型是有效的。

本文引用格式

黄金波, 李仲飞, 丁杰 . 基于非参数核估计方法的均值-VaR模型[J]. 中国管理科学, 2017 , 25(5) : 1 -10 . DOI: 10.16381/j.cnki.issn1003-207x.2017.05.001

Abstract

Value at Risk (VaR), which is widely used by fund companies, banks, securities firms and financial supervision institution, is one of the most popular risk measurement tools presently. The estimation methods of VaR and portfolio optimization models with VaR have been one of the hot spots in recent years. Since VaR is not a convex risk measure, it is difficult to obtain the global optimal solution of portfolio selection problems based on VaR. Moreover, the present study on portfolio selection with VaR is mostly carried out under normal or ellipsoidal distribution assumptions, which is not consistent with the reality of financial markets. In this paper, nonparametric kernel estimation method is firstly applied to estimate VaR and a nonparametric kernel estimator for asset portfolio's value at risk (VaR) is gotten with distribution-free specification. Then kernel estimator of VaR is embedded into the mean-VaR portfolio selection models and accomplish the goal that financial risk estimation and portfolio optimization are implemented at the same time. It is easy to show that the objective function of our model is smooth theoretically and easy to solve the optimization problem. Monte Carlo simulations are carried out to compare the accuracy of our method with the accuracy of classical methods. The simulation results show that our model possesses large sample properties, and outperforms empirical distribution method and Cornish-Fisher expansion method which are usually applied in the classical literatures under the asymmetric and thick tail distribution setting. Finally, our models and methods are applied to the Chinese A stock market. The daily data of SSE 50 Index and its constituent stocks are collected. The data window ranges from January 2nd 2004 to July 8th 2016, with a total of 3040 daily data. The empirical results show that our model can effectively control risk, as well as obtain excess returns relative to the stock index and support effectiveness of our model and application value of this research. It is acknowledged that, in this study, our nonparametric mean-VaR model has these shortcoming:First, our model requires a large number of samples; Secondly, our model is non-convex optimization problem, which is difficult to find the global optimal solution; Finally, it can be seen from the Monte Carlo simulation, sometimes our model cannot give the optimal asset allocation strategy, especially when the number of assets is large and the sample size is small. These questions are left for further research.

参考文献

[1] Markowitz H. Portfolio selection[J]. The Journal of Finance, 1952, 7(1):77-91.
[2] Campbell R, Huisman R, Koedijk K. Optimal portfolio selection in a value-at-risk framework[J]. Journal of Banking and Finance,2001, 25(9):1789-1804.
[3] Basak S, Shapiro A. Value-at-risk-based risk management:Optimal policies and asset prices[J]. The Review of Financial Studies,2001, 14(2):371-405.
[4] Alexander G J, Baptista A M. Economic implications of using a Mean-VaR model for portfolio selection:A comparison with Mean-Variance analysis[J]. Journal of Economic Dynamics and Control, 2002, 26(7-8):1159-1193.
[5] Alexander G J, Baptista A M. A comparison of VaR and CVaR constraints on portfolio selection with the Mean-Variance model[J]. Management Science, 2004, 50(9):1261-1273.
[6] 姚京, 李仲飞. 基于VaR的金融资产配置模型[J]. 中国管理科学, 2004, 12(1):8-14.
[7] Cui Xueting, Zhu Shushang, Sun Xiaoling, et al.Nonlinear portfolio selection using approximate parametric Value-at-Risk[J]. Journal of Banking and Finance, 2013, 37(6):2124-2139.
[8] Cui Xueting, Sun Xiaoling, Zhu Shushang, et al. Portfolio optimization with nonparametric Value-at-Risk:A block coordinate descent method[R]. Working Paper, 2016.
[9] Cai Zongwu, Wang Xian. Nonparametric estimation of conditional VaR and expected shortfall[J]. Journal of Econometrics, 2008, 147(1):120-130.
[10] Taylor J W. Estimating value at risk and expected shortfall using expectiles[J]. Journal of Financial Econometrics, 2008, 6(2):231-252.
[11] Taylor J W. Using exponentially weighted quantile regression to estimate value at risk and expected shortfall[J]. Journal of Financial Econometrics, 2008, 6(3):382-406.
[12] Alemany R, Bolancé C, Guillén M. A nonparametric approach to calculating value-at-risk[J]. Insurance:Mathematics and Economics, 2013, 52(2):255-262.
[13] 刘晓倩, 周勇. 加权复合分位数回归方法在动态VaR风险度量中的应用[J]. 中国管理科学, 2015, 23(6):1-8.
[14] 黄金波, 李仲飞, 周先波. VaR与CVaR的敏感性凸性及其核估计[J]. 中国管理科学, 2014, 22(8):1-9.
[15] Yao Haixiang, Li Zhongfei, Lai Yongzeng. Mean-CVaR portfolio selection:A nonparametric estimation framework[J]. Computers and Operations Research, 2013, 40(4):1014-1022.
[16] 黄金波, 李仲飞, 姚海祥. 基于CVaR两步核估计量的投资组合管理[J]. 管理科学学报, 2016, 19(5):114-126.
[17] Jorion P. Value at risk:The new benchmark for managing financial risk[M]. New York:McGraw-Hill, 2007.
[18] Chen Songxi, Tang Chengyong. Nonparametric inference of value-at-risk for dependent financial returns[J]. Journal of Financial Econometrics, 2005, 3(2):227-255.
[19] Li Qi, Racine J S. Nonparametric econometrics:Theory and practice[M]. Prinseton Princeton University Press, 2007.
[20] Tasche D, Expected shortfall and beyond[J]. Journal of Banking and Finance, 2002, 26(6):1519-1533.
[21] 杜红军, 王宗军. 基于Asymmetric Laplace分布的金融风险度量[J]. 中国管理科学, 2013, 21(4):1-7.
[22] 刘攀, 周若媚. AEPD、AST和ALD分布下金融资产收益率典型事实描述与VaR度量[J]. 中国管理科学, 2015, 23(2):21-28.
[23] Kotz S, Kozubowski T, Podgorski K. The Laplace distribution and generalizations:A revisit with applications to communications, economics, engineering, and finance[M]. Berlin:Springer Science & Business Media, 2012.
[24] Zhao Shangmei, Lu Qing, Han Liyan, et al. A mean-CVaR-skewness portfolio optimization model based on asymmetric Laplace distribution[J]. Annals of Operations Research, 2015,226(1):727-739.
文章导航

/