主管:中国科学院
主办:中国优选法统筹法与经济数学研究会
   中国科学院科技战略咨询研究院
论文

我国能源强度变动的影响因素分析——基于SDA分解技术

展开
  • 1. 北京航空航天大学经济管理学院, 北京 100191;
    2. 北京化工大学经济管理学院, 北京 100029
汤铃(1983-),女(汉族),广西桂林人,北京航空航天大学经济管理学院教授,研究方向:能源市场预测、能源政策仿真与分析,E-mail: tangling_00@126.com.

收稿日期: 2016-06-29

  修回日期: 2017-01-24

  网络出版日期: 2017-11-24

基金资助

国家优秀青年基金项目(71622011);国家重点研发计划重点专项(2016YFF0204405);北京市社会科学基金项目(14JGC094);国家电网公司科技项目

Analysis on Factors of China's Energy Intensity Changes for 1997-2012:Based on Structural Decomposition Analysis

Expand
  • 1. School of Economics and Management, Beihang University, Beijing 100191, China;
    2. School of Economics and Management, Beijing University of Chemical Technology, Beijing 100029, China

Received date: 2016-06-29

  Revised date: 2017-01-24

  Online published: 2017-11-24

摘要

随着我国经济的快速发展及能源消耗的急剧增加,深入分析我国能源强度变动的影响因素成为一个热点研究议题。基于结构分解分析方法(SDA),本文将能源强度变动因素分解成能源消耗系数、完全需要系数、最终需求、最终需求结构系数和最终能源消耗五个因素,并编制了1997、2002、2007、2012年我国实物价值型能源投入产出可比价序列表,以探索影响我国能源强度变动的主导因素。实证研究结果表明:(1)1997-2012年,我国能源总消费呈持续上升趋势,而能源强度波动性下降;(2)能源消耗系数一直是影响我国能源强度下降的主导因素;(3)然而,完全需要系数(即技术系数)对能源强度下降的影响效力在近年来逐步上升,并在2007-2012年间超过了能源消耗系数。

本文引用格式

李玲, 张俊荣, 汤铃, 余乐安 . 我国能源强度变动的影响因素分析——基于SDA分解技术[J]. 中国管理科学, 2017 , 25(9) : 125 -132 . DOI: 10.16381/j.cnki.issn1003-207x.2017.09.014

Abstract

With the rapid development of China's economy, two conflicting problems arise, i.e., increase of energy consumption and shortage of energyresources. Energy intensity, measured as energy use per unit of output,can well reflect comprehensiveenergy utilization efficiency. Thus analyzing the major factors of energy intensity changes becomes a basic issue for improving energy intensity.Under such a background,the structural decomposition analysis (SDA) is used to capture the driven factors of China's energy intensity changes. First, energy intensity changes are decomposed into five components-energy consumption coefficient, Leontief inverse coefficient, final demand structure, final demands by category, and final energy consumption coefficient. Second,the contribution of each component to China's energy intensity changes is evaluated to determine the predominant factors. As for database, monetary input-output table is coupled with energy consumption to establish physical-monetary energy input-outputtables for the years 1997, 2002, 2007 and 2012, ata constant price level of 2002. Some interesting findings are obtained in the empirical study:(1) From 1997 to 2012, China's energy consumption keptan increasing trend, whilethe energy intensity reduced with fluctuations.(2) The energy consumption coefficient wasthe leading factorfor China's energy intensity changes.(3) However, the influence of technology coefficient (Leontiefinverse)gradually increased and exceededthat of energy consumption coefficient during 2007-2012.Furthermore, these results provide helpful insights into policy designs for energy conservation and emissions reduction in China.

参考文献

[1] 严陆光, 陈俊武. 中国能源可持续发展若干重大问题研究[M]. 北京:科学出版社, 2007.

[2] Zeng Lin, Xu Ming, Liang Sai, et al. Revisiting drivers of energy intensity in China during 1997-2007:A structural decomposition analysis[J]. Energy Policy, 2014, 67:640-647.

[3] 蔡圣华, 牟敦国, 方梦祥. 二氧化碳强度减排目标下我国产业结构优化的驱动力研究[J]. 中国管理科学, 2011, 19(4):169-175.

[4] 夏炎, 杨翠红, 陈锡康. 基于可比价投入产出表分解我国能源强度影响因素[J]. 系统工程理论与实践, 2009, 29(10):21-27.

[5] 张炎治, 聂锐. 能源强度的指数分解分析研究综述[J]. 管理学报, 2008, 5(5):647-650.

[6] 李根, 刘家国, 赵金楼. 基于投入产出非线性优化的制造业完全能耗强度情景分析[J]. 中国管理科学, 2016, 24(3):31-40.

[7] Ang B W, Liu F L, Chew E P. Perfect decomposition techniques in energy and environmental analysis[J]. Energy Policy, 2003, 31(14):1561-1566.

[8] 张玲玲, 李军, 佟仁城. 基于ERP的机械制造企业投入产出表结构及分析[J]. 中国管理科学, 2007, 15(1):55-63.

[9] Zhang Zhongxiang. Why did the energy intensity fall in China's industrial sector in the 1990s? The relative importance of structural change and intensity change[J]. Energy Economics, 2003, 25(6):625-638.

[10] Choi K H, Ang B W. Attribution of changes in Divisia real energy intensity index-An extension to index decomposition analysis[J]. Energy Economics, 2012, 34(1):171-176.

[11] 房斌, 关大博, 廖华,等. 中国能源消费驱动因素的实证研究:基于投入产出的结构分解分析[J]. 数学的实践与认识, 2011, 41(2):66-77.

[12] Leontief W W, Ford D. Air pollution and the economic structure:Empirical results of input-output computations[M]. Harvard University, 1971.

[13] 陈锡康. 投入产出方法[M]. 北京:人民出版社, 1983.

[14] Hoekstra R, Van den Bergh J C. Comparing structural decomposition analysis and index[J]. Energy economics, 2003, 25(1):39-64.

[15] Dietzenbacher E, Los B. Structural decomposition techniques:Sense and sensitivity[J]. Economic Systems Research, 1998, 10(4):307-324.

[16] Dietzenbacher E, Los B. Structural decomposition analyses with dependent determinants[J]. Economic Systems Research, 2000, 12(4):497-514.

[17] 陈海燕, 蔡嗣经. 北京工业终端能源消费变化的分解研究[J]. 中国能源, 2006, 28(12):28-30.

[18] He Peijun, Ng T S, Su Bin. Energy import resilience with input-output linear programming models[J]. Energy Economics, 2015, 50:215-226.

[19] Zhang Junrong, Li Ling, Yu Lean, et al. Comprehensive evaluation of energy intensity change for 1997-2012 based on input-output analysis:Evidence from Beijing[J]. Procedia Computer Science, 2016, 91:1057-1063.

[20] 张成龙, 李继峰, 张阿玲,等. 1997-2007年中国能源强度变化的因素分解[J]. 清华大学学报:自然科学版, 2013(5):688-693.

[21] 夏炎, 杨翠红, 陈锡康. 中国能源强度变化原因及投入结构的作用[J]. 北京大学学报:自然科学版, 2010,46(3):442-448.

[22] 李海英. 基于可比价IO-SDA模型的我国二氧化碳强度研究[D]. 成都:西南财经大学, 2014.

[23] Wang Yafei, Zhao Hongyan, Li Liying, et al. Carbon dioxide emission drivers for a typical metropolis using input-output structural decomposition analysis[J]. Energy Policy, 2013, 58:312-318.

[24] 刘静华, 贾仁安, 涂国平. 1995年至2007年中国能源消费强度的分解模型及实证分析[J]. Resources Science, 2010, 32(10):1846-1855.
文章导航

/