主管:中国科学院
主办:中国优选法统筹法与经济数学研究会
   中国科学院科技战略咨询研究院
论文

基于灰色算子的分形法及应用

展开
  • 1. 常州大学商学院, 江苏 常州 213164;
    2. 南京航天航空大学经济与管理学院, 江苏 南京 211106;
    3. 南京财经大学金融学院, 江苏 南京 210046

收稿日期: 2014-05-22

  修回日期: 2017-07-10

  网络出版日期: 2017-12-15

基金资助

国家自然科学基金资助项目(71701024)

The Modified Fractal Methods Based on the Grey Operator and Their Application

Expand
  • 1. Business College, Changzhou University, Changzhou, 213164, China;
    2. College of Economics and Management, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China;
    3. School of Finance, Nanjing University of Finance and Economics Nanjing 210046, China

Received date: 2014-05-22

  Revised date: 2017-07-10

  Online published: 2017-12-15

摘要

在灰色缓冲算子和灰色调整系数的框架下,构造灰色算子,提出了权重可调的加权移动平均去趋势法,进一步将其拓广为多重分形加权移动平均去趋势法。算法表明原有的移动平均去趋势法及其多重分形形式分别是加权移动平均去趋势法及其多重分形的特例。用带波动和线性趋势的分形高斯噪声与二项式多重分形进行数值模拟,表明权重为6的中心加权移动平均去趋势法及其多重分形能有效地去除序列趋势,计算出的Hurst值和多重分形谱f(α)比原有算法更接近真值。将权重为6的中心加权移动平均去趋势法及其多重分形分析南京市气温序列的长记忆性与多重分形性,结果表明从1951-2008年,七月份气温增速要明显小于一月份的增速,一月份和七月份气温都存在长记忆性,但七月份气温序列的长记忆性要高于一月份,表明一月份和七月份气温序列均可预测,七月份的可预测性更高些,这为通过预测对气温灾害风险防范提供了可行性;此外,一月份、七月份的气温序列均有多重分形性,说明可从多标度角度对其建模分析。

本文引用格式

周伟杰, 党耀国, 顾荣宝 . 基于灰色算子的分形法及应用[J]. 中国管理科学, 2017 , 25(10) : 89 -99 . DOI: 10.16381/j.cnki.issn1003-207x.2017.10.010

Abstract

Under the framework of grey buffer operator and grey adjustment coefficients, the grey operation is constructed, and the weighted detrended moving average with adjustable weighted coefficients and its multifractal form called as multifractal weighted detrended moving average are put forward. The original detrended moving average is a special of the modified fractal method. Numerical simulation on fractal Gauss noise and binomial multifractal with fluctuation and linear trend shows that the centered detrended weighted moving algorithm whose weight is 6 can effectively remove the sequence trend, and the accuracy of Hurst and f(α) calculated by weighted detrended moving average and multifractal weighted detrended moving average are more close to analytics value compared with original algorithm. In empirical part, the long term memory and multifractality of daily temperature series in Nanjing from 1951 to 2008 by modified methods are investigated. The results show that the growth rate of temperature in July is significantly smaller than that of January; compared to the original methods, the conclusions from modified fractal methods are more close to reality; all temperature sequences have the long term memory feature, but the long term memory of daily temperature series in contained the highest, the lowest and the average temperature are stronger than that in January, which indicates that predictability of temperature in July is higher than that in January. The prediction of temperature series gives a way to manage the temperature disaster risk. Besides, temperature series of Nanjing in January and July possess multifractality, which suggest that the temperature series can be studied from multi scale. Through the shape of multifractal spectrum, it is found that the internal structure of the highest and average temperature sequences are more complex than the lowest temperature sequences whether for January or July.

参考文献

[1] Mandelbrot B B. Fractals and scaling in finance [M]. New York: Springer, 1997.

[2] 魏宇.多分形波动率测度的VAR计算模型[J].系统工程理论与实践, 2009,29(9):7-15.

[3] Jiang Zhiqiang, Zhou Weixing. Multifractal analysis of Chinese stock volatilities based on the partition function approach [J]. Physica A, 2008, 387(19-20): 4881-4888.

[4] 张林, 李荣钧, 刘小龙. 基于小波领袖多重分形分析法的股市有效性及风险检测[J]. 中国管理科学, 2014, 22(6):17-26.

[5] Hurst H E. Long team storage capacity of reservoirs [J]. Transactions American Society of Civil Engineers, 1951, 116(76): 770-808.

[6] Lo A W. Long-term memory in stock market prices [J]. Econometrica, 1991, 59(5): 1279-1313.

[7] Peng C K, Buldyrev S V, Havlin S, et al. Mosaic organization of DNA nucleotides[J]. Physical Review E, 1994, 49(2): 1685-1689.

[8] Hu Kun, Ivanov P C, Chen Zhi, et al.Effect of trends on detrended fluctuation analysis [J]. Physical Review E, 2001, 64(1): 011114.

[9] Kantelhardt J W, Zschiegner S A, Koscielny-Bunde E, S. et al. Multifractal detrended fluctuation analysis of non-stationary time series [J]. Physica A, 2002, 316(4):87-114.

[10] Vandewalle N, Ausloos M. Crossing of two mobile averages: A method for measuring the roughness exponent [J]. Physical Review E, 1998, 58(5): 6832-6834.

[11] Alessio E, Carbone A, Castelli G, et al. Second-order moving average and scaling of stochastic time series [J]. European Physical Journal B, 2002, 27(2): 197-200.

[12] Carbone A, Castelli G, Stanley H E. Analysis of clusters formed by the moving average of a long range correlated time series [J]. Physical Review E, 2004, 69(4): 026105.

[13] Serletis A, Rosenberg A A. The Hurst exponent in energy futures prices [J]. Physica A, 2007, 380(13): 325-332.

[14] Ferreira P. Portuguese and Brazilian stock market integration: A non-linear and detrended approach [J]. Portuguese Economic Journal, 2017,16(1):49-63.

[15] Xu Limei, Ivanov P C, Hu Kun, et al.Quantifying signals with power-law correlations: A comparative study of detrended fluctuation analysis and detrended moving average techniques [J]. Physical Review E, 2005, 71(5): 051101.

[16] Bashan A, Bartsch R, Kantelhardt J W, et al.Comparison of detrend methods for fluctuation analysis[J]. Physica A, 2008, 387(21): 5080-5090.

[17] Gu Gaofeng, Zhou Weixing.Detrend moving average algorithm for multifractals[J]. Physical Review E, 2010, 82(1): 011136.

[18] Liu Sifeng. The three axioms of buffer operator and their applications to GM(1,1) prediction[J]. Journal of Grey System, 1991, 3(1): 39-48.

[19] 刘以安, 陈松灿,张明俊,等.缓冲算子及数据融合技术在目标跟踪中的应用[J].应用科学学报,2006,24(2):154-158.

[20] 吴正朋,刘思峰,米传民,等.基于反向累积法的弱化缓冲算子序列研究[J].中国管理科学, 2009, 17(3): 136-141.

[21] 刘思峰, 杨英杰, 吴利丰. 灰色系统理论及其应用[M]. 科学出版社, 2014.

[22] 王鹏, 袁小丽. 金融资产收益非对称性的多标度分形测度及其在VaR计算中的应用[J]. 中国管理科学, 2015, 23(3):13-23.

[23] Kalamaras N, Philippopoulos K, Deligiorgi D, et al.Multifractal scaling properties of daily air temperature time series[J]. Chaos Solitons & Fractals, 2017, 98:38-43.

[24] Mali P. Multifractal characterization of global temperatureanomalies [J]. Theoretical & Applied Climatology, 2015, 121(3-4):641-648.

[25] Pincus S, Kalman R E. Irregularity, volatility, risk, and financial market series[J].Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(38): 13709-13714.
文章导航

/