鉴于突发事件发展与演化的不确定性与动态性,立足于更为优化的应急决策,从多主体竞争角度出发,基于复杂动态环境下工程应急管理中两决策主体的特性:一方面追求最优风险控制,同时力争自身利益最大化,本文建立了连续型动态微分博弈模型。算法方面将动态博弈理论与最优控制理论相结合,并通过MATLAB软件进行模型的数值求解和仿真,阐释应急管理系统中各组织实体之间竞争与合作并存的博弈关系和演化过程。进一步针对部分参数进行了灵敏度分析,挖掘系统关键影响因子,提出可行性建议。本文研究从理论和模型角度探讨了突发事件应急管理的动态决策机制,为实践中应急策略的择优和应急措施的实施提供了必要的方法支撑,为实现高效应急决策,优化资源集成奠定了理论基础。
In view of the uncertainty and dynamic characteristics of the development and evolution of the emergency event in engineering projects, as to make optimal emergency-decision, from the perspective of multi subject competition, based on the characteristics of different game competitors(the regulators and the decision maker) under the complex and dynamic environment in projectengineering emergency management, a continuous dynamic differential game model of two participates is established to describe the process.While making a decision, both competitors want to make an optimal-control on the system risk, as to seeking the maximum interests of their own at the same time. In the algorithm apart, the dynamic game theory and optimal control theory are combined, and the MATLAB software is used to solve the model.Furthermore,in order to study the influence of the various parameters in the management system, the sensitivity analysis of the model is carried out.By sensitivity analysis, the corresponding management recommendations targeted can be put forward, and it can do great help to explore and explain the evolution process of the competition and cooperation among the various entities in the complex network of risk management.In this paper, the dynamic decision-making mechanism of emergency is discussed from the theoretical level, which can be used as a reference to some related research and help to make a more profound understanding of the formation of emergency management system, while it can also provide the necessary support for the selection and implementation of emergency strategy in practice.In this way, the study can help managers to make efficient decisions and optimize the integration of resources.
[1] 陈勇强,顾伟.工程项目风险管理研究综述 [J].科技进步与对策,2012,29(18):157-160.
[2] 李存斌,陆龚曙.工程项目风险元传递的系统动力学模型 [J].系统工程理论与实践,2012,32(12):2731-2739.
[3] Chanamool N, Naenna T.Fuzzy FMEA application to improve decision-making process in an emergency department [J].Applied Soft Computing,2016,43:441-453.
[4] 马奔,毛庆铎.大数据在应急管理中的应用[J].中国行政管理,2015,(03):136-142.
[5] 崔玉泉,张宪..非对称信息下供应链应急管理和信息价值研究[J].中国管理科学,2016,24(04):83-93.
[6] Wang Liang,Zhang Zi-xin.A prospect theory-based interval dynamic reference point method for emergency decision making [J].Expert Systems with Applications,2015,42(23):9379-9388.
[7] 姚杰,计雷,池宏.突发事件应急管理中的动态博弈分析 [J].管理评论,2005,17(3):46-50+64.
[8] 周正龙,马本江,胡凤英.基于进化稳定策略的施工项目安全管理研究 [J].安全与环境学报,2016,16(01):168-171.
[9] 叶光辉,李纲.多阶段多决策主体应急情报需求及其作用机理分析——以城市应急管理为背景 [J].情报杂志,2015,34(6):27-32.
[10] Fogli D,Guida G.Knowledgecentered design of decision support systems for emergency management [J].Decision Support Systems,2013,55(1): 336-347.
[11] Kadri F,Chaabane S,Tahon C.A simulationbased decision support system to prevent and predict strain situations in emergency department systems[J].Simulation Modelling Practice and Theory,2014,42(3):32-52.
[12] 王长峰,满颖.基于动态博弈理论的重大工程应急管理决策研究 [J].中国管理科学,2013,21(S1):172-176.
[13] 刘舒悦,朱建明,黄钧,等.地震救援中基于信息实时更新的两阶段应急物资调配模型 [J].中国管理科学,2016,24(9):124-132.
[14] Torretta V,Rada E C,Schiavon M,et al.Decision support systems for assessing risks involved in transporting hazardous materials: A review [J].Safety Science,2017,92:1-9.
[15] Xu Xuanhua,Du Zhijiao Chen Xiaohong.Consensus model for multi-criteria large-group emergency decision making considering non-cooperative behaviors and minority opinions [J].Decision Support Systems,2015,79(C):150-160.
[16] Pan Tang,Shen Qiping.Decisionmaking model to generate novel emergency response plans for improving coordination during large-scale emergencies.Knowledge-Based Systems,2015,90(C):111-128.
[17] 庄文英. 基于动态微分博弈理论的工程应急决策研究[D].济南:山东大学,2014.
[18] 张嗣赢.微分对策[M].北京:科学出版社,1987.
[19] Washburn A R.A computation method for matrix differential games [J].International Journal of Game Theory,1977,6(1):1-10.