主管:中国科学院
主办:中国优选法统筹法与经济数学研究会
   中国科学院科技战略咨询研究院
论文

基于双版面Hotelling模型的在线广告灵活版面定价策略研究

展开
  • 上海财经大学国际工商管理学院, 上海 200433

收稿日期: 2016-04-12

  修回日期: 2017-01-09

  网络出版日期: 2018-02-10

基金资助

教育部人文社科基金项目(11YJA630170)

Based On the Double Product Hotelling Model Flexible Product Pricing Strategy Research Of Online Advertising

Expand
  • School of International Business Administration, Shanghai University of Finance and Economics, Shanghai 200433, China

Received date: 2016-04-12

  Revised date: 2017-01-09

  Online published: 2018-02-10

摘要

在线广告版面的易逝性及市场需求的不确定性是广告版面供应商面临的一大难题。灵活版面已成为广告版面供应方应对这一难题、最大化收益的重要策略。本文基于在线广告版面间的可替代性,构建了在线广告整售模式下完美信息双版面Hotelling模型,通过剖析在确定版面与灵活版面不同价格组合下的需求方策略行为,发现了供应方灵活版面策略的最优定价策略空间。研究结果表明,版面供应方须协调确定版面和灵活版面的定价方能用灵活版面策略最大化其收益,否则将会因跌落两个降价陷阱从而导致收益减少。进一步研究发现,如果版面容量足够大,对确定版面适中定价,采用灵活版面策略总是能够使供应方收益最大,该最大值随着需求方效用敏感度的增加而单调增加;当版面容量不是很大,但若需求方偏好效用敏感度足够大,灵活版面策略也能够提高供应方收益。如果版面容量太小,没有必要采用灵活版面策略。

本文引用格式

许淑君 . 基于双版面Hotelling模型的在线广告灵活版面定价策略研究[J]. 中国管理科学, 2017 , 25(12) : 117 -125 . DOI: 10.16381/j.cnki.issn1003-207x.2017.12.013

Abstract

Online advertising has grown at a fast pace over the past decade and the growth is not expected to slow down in the future. But it is challenging for online pages supplier that online AD pages capacity is perishable and its market demand is of great uncertainty. It makes AD pages supplier adopt the Flexible Page Strategy (FPS) to increase their revenue. In this paper, based on the substitutability between the online advertising spaces, a Double-Page Hotelling Model with perfect information is proposed to analyze the demanders' strategic behavior to the different price combination considering demanders' preference and consumer surplus. Our analysis thus highlights the importance of coordination the specific page (SP) pricing and flexible page (FP) pricing to maximize the supplier's revenue. Studies have shown that in order to maximize their revenue through FPS, the supplier shall coordinate price SP and FP, otherwise will be falling for two price trap resulting in reduced revenue.
It is found that there is the optimal pricing for FPS of the supplier. When pricing of SPis moderate, if the capacity is large enough, FPS can always make the supplier revenue maximum, which increase as the demand preference utility sensitivity will monotonously increase.And if the capacity is not very big, as long as the preferences utility sensitivity of the demanders is enough big, FPS can improve the supplier's revenue.If the capacity is too small, it is not necessary to adopt FPS.

参考文献

[1] 温冬开. 美国网络广告效果研究述要[J].广告大观(综合版), 2001,(2):32-33.

[2] 艾瑞咨询.2014年中国网络广告行业年度监测报告[R].[2014-04-14].http://www.iresearch.com.cn/report/2138.html.

[3] 中文互联网数据资讯中心.IAB:2015年上半年美国广告收入调查报告[R].[2015-11-19].www.1991it.com/archives/399344.html.

[4] Karmarkar S, Dutta G.Multi-period revenue management model for Internet advertising[J]. Journal of Revenue & Pricing Management, 2012:(1-15).

[5] Roels G, Fridgeirsdottir K.Dynamic revenue management for online display advertising[J]. Journal of Revenue and Pricing Management, 2009, 8(5):452-466.

[6] Feng Juan, Bhargava H K, Pennock D M. Implementing sponsored search in web search engines:Computational evaluation of alternative mechanisms[J]. Social Science Electronic Publishing, 2007,19(1):137-148.

[7] Amiri A, Menon S. Scheduling banner advertisements on the web[J]. Informs Journal on Computing 2004, 16(1):95-105.

[8] Chickering D M, Hecherman D. Targeted advertising on the wet with inventory management[J]. Interfaces, 2003, 33(5):71-77.

[9] Chatterjee P, Hoffman D, Novak T P, Modeling the clickstream:implications for web-based advertising efforts[J]. Working paper, Rutgers University,1998.

[10] 朱丽辉. 在线广告中实时竞价机制研究与算法实现[D]. 上海:华东师范大学. 2015.

[11] 卜天明. 网络经济若干拍卖机制的研究[D]. 上海:复旦大学,2007.

[12] Kumar S, Jacob V S, Sriskandarajah C, Scheduling advertisements on a web page to maximize revenue[J]. European Journal of Operational Research. 2006,17(3):1067-1089.

[13] 刘佳曦. 美国三大门户网站网络广告特征研究[D]. 长春:东北师范大学. 2009.

[14] Talluri K T, van Ryzin G J.The theory and practice of revenue management[M]. New York. Springer Science + Business Media, Inc., 2004.

[15] Aggarwal C C, Wolf J L, Yu P S.A framework for the optimizing of www advertising[M]//Lamersdorf W,Merz M.Trends in distributed systems for electronic commerce.Berlin,Heidelberg:Springer,1998.

[16] Dawande M,Kumar S, Sriskandarajah C. Performance bounds of algorithms for scheduling advertisements on a Web page[J], Journal of Scheduling, 2003, 6(4):373-394.

[17] Akcay Y, Natarajan, H P, Xu S H.Joint dynamic pricing of multiple perishable products under consumer choice[J].Management Science. 2010, 56(8):1345-1361.

[18] Araman V F, Fridgeirsdottir K. Online advertising:Revenue management approach[J]. Working Paper, London Business School,2008.

[19] Fridgeirsdottir K, NajafiAsadolahi S. Revenue management for online advertising:Impatient advertisers[J]. Working Paper,London Business School. 2008.

[20] Turner J, Scheller-Wolf A A. Tayur S R. Scheduling of dynamic in-game advertising[J].Working Paper, Carnegie Mellon,2008.

[21] Gallego G, van Rzin G J, Optimal dynamic pricing of inventories with stochastic demand over finite horizons[J]. Management Science. 1994, 40(8):999-1020.

[22] Adler M, Gibbons P B, Matias Y, Scheduling space-sharing for internet advertising[J]. Journal of Scheduling. 2002,5(2):103-119.

[23] Gallego G, Stefanescu C. Upgrades, upsells and pricing in revenue management[J]. Working Paper, London Business School,2007.

[24] Bitran G, Caldentey, R. An overview of pricing models for revenue management[J].Manufacturing & Service Operations Management. 2003, 5(3):203-229.

[25] 宋鸿芳,冉伦,褚宏睿,等.消费者锚定效应下的动态定价与库存问题[J]. 中国管理科学,2015,23(4):123-128.

[26] 陈章跃,王勇,刘华明. 考虑顾客策略行为和产品质量的闭环供应链决策模型[J]. 中国管理科学,2016,24(3):109-116.

[27] Gallego G, Phillips R.Revenue management of flexible products[J]. Manufacturing & Service Operations Management, 2004:321-337.

[28] Gallego G, Iyengar G, Phillips R, et al, CORC technical report TR-2004-01 managing flexible products on a network[R]. Working paper,Colimbia University,2004.

[29] Post D. Variable opaque products in the airline industry:A tool to fill the gaps and increase revenues[J]. Journal of Revenue and Pricing Management, 2010,9(4):292-299.

[30] Fay S, Xie Jinhong. Probabilistic goods:A creative way of selling products and services[J]. Marketing Science, 2008, 27(4):674-690.

[31] Gallego G, Stefanescu C.Service engineering:The future of service feature design and pricing[R].Working Paper,Columbia University. 2011.

[32] Müller-Bungart M. Revenue management with flexible products:models and methods for the boarding industry[M].Berlin-Heidelbeng:Springer. 2010.

[33] Gallego G, Hu Ming.Dynamic pricing of perishable assets under competition[J]. Social Science Electronic Publishing, 2013, 60(5):1241-1259.

[34] 王国才, 朱道立. 基于收益管理的广告业时段最优分配模型[J].预测, 2004, 23(3):50-53.

[35] 周蓉, 杨佩芝. 传媒产业收入管理特征和发展前景研究[J]. 上海管理科学, 2009,(31):18-22.
文章导航

/