主管:中国科学院
主办:中国优选法统筹法与经济数学研究会
   中国科学院科技战略咨询研究院
论文

人口结构变动对时间偏好的影响分析

展开
  • 1. 清华大学经济管理学院, 北京 100084;
    2. 北京大学软件与微电子学院, 北京 100871

收稿日期: 2017-10-12

  修回日期: 2018-01-05

  网络出版日期: 2018-05-24

The Effect of Population Structure on Time Preference

Expand
  • 1. School of Economics and Management, Tsinghua University, Beijing 100084, China;
    2. School of Software and Microelectronics, Peking University, Beijing 100871, China

Received date: 2017-10-12

  Revised date: 2018-01-05

  Online published: 2018-05-24

摘要

本文从经济学角度定义了老龄化率,以便更好地刻画社会进入老龄化且老龄化程度不断变化这一现象,并将人口结构参数定义为老龄化率与人口增长率的比例。人口结构变动除影响技术进步率外,还影响家庭对未来的看法,将人口结构参数引进Ramsey模型分析对经济的影响,发现在鞍型的平衡增长路径上,人均产出增长率取决于技术进步率与老龄化率之差,而由于人口结构参数影响时间偏好,经济增速最大化与社会福利最大化所要求的人口结构参数出现了不一致,本文给出了两种情形下的必要条件,并进行数值模拟。

本文引用格式

欧明青, 倪宣明, 韦江 . 人口结构变动对时间偏好的影响分析[J]. 中国管理科学, 2018 , 26(3) : 188 -196 . DOI: 10.16381/j.cnki.issn1003-207x.2018.03.020

Abstract

Based on the definition of aging rate, the population structure is defined as the ratio of aging rate and population growth rate. This structure influences time preference, and is analyzed in Ramsey model. In the saddle balanced growth path, the output growth rate per capita depends on the difference between the technical progress rate and the aging rate. However, the optimal structure in social welfare maximum is not the same as the one in the output growth maximum. The function simulation is also conducted based on the corresponding first order conditions. In order to analyze the influence of population structure parameters on economic system, a special situation is considered. The aging rate is a fixed proportion of the population growth rate and the population growth rate does not affect population structure parameters. The maximization of economic growth requires that the marginal impact of population structure parameters on technological progress is equal to the growth rate of the total population. In order to simplify the analysis of social welfare, the assumption that the technological progress rate is equal to the rate of ageing is given and then the first order condition of the optimal population structure parameters corresponding to social welfare maximization is obtained. The marginal effect of population structure parameters on the utility discount factor should be equal to zero.

参考文献

[1] Harrod R F. An essay in dynamic theory[J]. The Economic Journal, 1939, 49(193):14-33.

[2] Solow R. A contribution to the theory of economic growth[J]. Quarterly Journal of Economics, 1956, 70(1):65-94.

[3] Cass D. Optimum growth in an aggregative model of capital accumulation[J]. Review of Economic Studies, 1965, 32(3):233-240.

[4] Koopmans T C. On the concept of optimal economic growth[M]//Koopmans T C. The Econometric Approach to Development Planning, Amsterdam:North Holland Press, 1965.

[5] Ramsey F P. A mathematical theory of saving[J]. The Economic Journal, 1928, 38(152):543-559.

[6] Samuelson P A. A note on measurement of utility[J]. Review of Economic Studies, 1937, 4(2):155-161.

[7] Sidrauski M. Rational choice and patterns of growth in a monetary economy[J]. American Economic Review, 1967, 57(2):534-544.

[8] Tobin J. Money and economic growth[J]. Econometrica, 1965, 33(4):671-684.

[9] Kurz M. Optimaleconomic growth and wealth effects[J]. International Economic Review, 1968, 9(3):348-357.

[10] Arrow K J, Kurz M. Optimal growth with irreversible investment in a Ramsey model[J]. Econometrica, 1970, 38(2):331-344.

[11] Barro R J. Government spending in a simple model of endogenous growth[J]. Journal of Political Economy, 1990, 98(5):103-125.

[12] Cole H L, Mailath G J, Postlewaite A. Social norms, savings behavior, and growth[J]. Journal of Political Economy, 1992, 100(6):1092-1125.

[13] Turnovsky S. The impact of terms of trade shocks on a small open economy:A stochastic analysis[J]. Journal of International Money and Finance, 1993, 12(3):278-297.

[14] Uzawa H.Time preference, the consumption function and optimum asset holdings[M]//Wolfe J N. Value, capital and growth:Papers in honor of Sir John Hicks, Chicago:Aldine Press, 1968.

[15] Obstfeld M. Macroeconomic policy, exchange-rate dynamics, and optimal asset accumulation[J]. Journal of Political Economy, 1981, 89(6):1142-1161.

[16] Becker G S, Barro R J. A reformulation of the economic theory of fertility[J]. Quarterly Journal of Economics, 1988, 103(1):1-25.

[17] Becker G S, Mulligan C B. The endogenous determination of time preference[J]. Quarterly Journal of Economics, 1997, 112:729-758.

[18] Gootzeit M, Schneider J, Smith W. Marshallian recursive preferences and growth[J]. Journal of Economic Behavior and Organization, 2002, 49(3):381-404.

[19] Kam E. A note on time preference and the Tobin effect[J]. Economics Letters, 2005, 89(1):127-132.

[20] Laibson D. Golden eggs and hyperbolic discounting[J]. Quarterly Journal of Economics, 1997, 112(2):443-477.

[21] Barro R J. Ramsey meets Laibson in the neoclassical growth model[J]. Quarterly Journal of Economics, 1999, 114(4):1125-1152.

[22] Takashi K. Externalities and nonlinear discounting:Indeterminacy[J]. Journal of Economic Dynamics and Control, 2002, 26(1):141-169.

[23] Krusell P, Smith A. Consumption-savings decisions with quasi-geometric Discounting[J]. Econometrica, 2003, 71(1):365-375.

[24] Arrow K J. The economic implication of learning by doing[J]. Review of Economic Studies, 1962, 29:155-173.

[25] Uzawa H. Optimal technical change in an aggregative model of economic growth[J]. International Economic Review, 1965, 6(1):18-31.

[26] Romer P. Increasing return and long-run growth[J]. Journal of Political Economy, 1986, 94(10):1002-1037.

[27] Romer P. Endogenous technological change[J]. Journal of Political Economy, 1990, 98(5):71-102.

[28] Lucas R. On the mechanics of economic development[J]. Journal of Monetary Economics, 1988, 22(1):3-42.

[29] Lucas R. Making a miracle[J]. Econometrica, 1993, 61(2):251-272.

[30] Aghion P, Howitt P. A model of growth through creative destruction[J]. Econometrica, 1992, 60(2):323-391.

[31] Kremer M. Population growth and technological change:One million BC to 1990[J]. Quarterly Journal of Economics, 1993, 108(3):681-716.

[32] Samuelson P A. An exact consumption-loan model of interest with or without the social contrivance of money[J]. Journal of Political Economy, 1958, 66(6):467-482.

[33] Diamond P. National debt in a neoclassical growth model[J]. American Economic Review, 1965, 55(5):1126-1150.

[34] Futagami K, Nakajima T. Population aging and economic growth[J]. Journal of Macroeconomics, 2001, 23(1), 31-44.

[35] 刘穷志, 何奇. 人口老龄化, 经济增长与财政政策[J]. 经济学(季刊), 2013, 12(1):119-134.

[36] Nishiyama S. Fiscal policy effects in a heterogeneous-agent OLG economy with an aging population[J]. Journal of Economic Dynamics and Control, 2015, 61:114-132.

[37] 胡翠, 许召元. 人口老龄化对储蓄率影响的实证研究——来自中国家庭的数据[J]. 经济学(季刊), 2014, 13(4):1245-1364.

[38] Mao Rui, Xu Jianwei. Population aging, consumption budget allocation and sectoral growth[J]. China Economic Review, 2014, 30:44-65.

[39] Fougere M, Harvey S, Mercenier J, et al. Population ageing, time allocation and human capital:A general equilibrium analysis for Canada[J]. Economic Modelling, 2008, 26(1):30-39.

[40] Choi K H, Shin S. Population aging, economic growth, and the social transmission of human capital:An analysis with an overlapping generations model[J]. Economic Modelling, 2015, 50(2):138-147.

[41] Blanchard O J. Debt, deficits, and finite horizons[J]. Journal of Political Economy, 1985, 93(2):223-247.

[42] Yaari M E. Uncertain lifetime, life insurance, and the theory of the consumer[J]. Review of Economic Studies, 1965, 32(2):137-150.

[43] 武康平, 倪宣明, 殷俊茹. 浅析人口老龄化对经济发展的影响[J]. 中国人口、资源与环境, 2014, 24(12):103-108.

[44] 武康平, 倪宣明, 殷俊茹. 人口老龄化, 经济增长与社会福利——基于内生经济增长理论的分析[J]. 经济学报, 2015, 2(1):47-60.
文章导航

/