主管:中国科学院
主办:中国优选法统筹法与经济数学研究会
   中国科学院科技战略咨询研究院
论文

考虑再制造设计水平的多期闭环供应链网络均衡

展开
  • 1. 青岛大学自动化与电气工程学院, 山东 青岛 266071;
    2. 青岛大学商学院, 山东 青岛 266071;
    3. 空军青岛航空医学鉴定训练中心, 山东 青岛 266071
戴更新(1970-),男(汉族),安徽无为人,青岛大学商学院教授,博士,研究方向:物流与供应链管理,E-mail:dgx@qdu.edu.cn.

收稿日期: 2016-06-27

  修回日期: 2017-12-07

  网络出版日期: 2018-10-22

基金资助

中国博士后科学基金资助项目(2017T100479,2016M590625);国家自然科学基金资助项目(71573144,71371102);教育部人文社会科学规划基金资助项目(17YJA630130);山东省高校科技计划项目(J15LN42)

Multi-period Closed-loop Supply Chain Network Equilibrium with Design Level for Remanufactureability

Expand
  • 1. College of Automation and Electronic Engineering, Qingdao University, Qingdao 266071, China;
    2. School of Business, Qingdao University, Qingdao 266071, China;
    3. Qingdao Air Force Aeromedicine Identification Training Center, Qingdao 266071, China

Received date: 2016-06-27

  Revised date: 2017-12-07

  Online published: 2018-10-22

摘要

再制造设计已应用于企业实践,利于产品的再制造过程,但需要额外的投资。本文以多个规划期为决策环境,以包含需求市场层、零售商层和制造商层的闭环供应链网络为研究对象,其中每层包含多个成员,研究了制造商产品可再制造性设计水平决策问题。政府规定最低可再制造设计水平,各制造商对新产品的可再制造设计水平、生产和交易等变量进行决策;正向渠道中零售商同时销售新产品和再制造品,逆向渠道中零售商受制造商委托,在每个规划期末,回收各需求市场产生的废旧品;消费者对新产品和再制造品评价不同,通常对新产品评价较高,而对再制造品评价较低,其对两种产品愿意支付的价格也会不同。利用变分不等式等理论获得制造商和零售商的均衡条件,并获得整个供应链网络均衡模型。采用修正投影收缩算法求解。通过算例对再制造投资影响因子、政府最低可再制造水平、消费者对再制造品的评价系数等参数对均衡结果的影响进行了分析,获得了在多规划期供应链网络环境下,制造商的产品可再制造设计水平和政府有关部门决策时需关注的问题等管理学启示。

本文引用格式

张桂涛, 曲箫宇, 戴更新, 胡劲松, 王永波, 孙浩 . 考虑再制造设计水平的多期闭环供应链网络均衡[J]. 中国管理科学, 2018 , 26(8) : 54 -66 . DOI: 10.16381/j.cnki.issn1003-207x.2018.08.006

Abstract

The remanufactureabale design has been used in some companies, which can benefit the remanufacturing process. However, extra investment is also needed in the product design. Therefore, the enterprise especially manufacturers want to decide the remanufactureabale design level in production. In this paper, a kind of remanufactureabale design level implementation scheme of manufacturers is investigated under the multi-period decision making environment. In order to describe the change of the supply chain network, the decision making time is discreted to several periods. And the adjacent periods are connected with by recycling products cross-period use, and inventory transfer of new products and remanufacturing products. At present, the relevant literature manly focuses on the supply chain with one manufacturer and one retailer, and not fully expresses the competition among the same type players. In this paper, a closed-loop supply chain(CLSC) network comprises multiple competitive manufacturers, multiple competitive retailers and multiple demand markets. The government regulates the lowest remanufactureabale design level, based on this regulation, the manufacturers make decisions for the remanufactureabale design level of new product, the production and transaction amount. In the forward channel, the manufacturers and retailers sell new products and remanufactured products, and in the reverse channel, the retailers, commissioned by manufacturers, collect used products from demand markets at the end of every period. To simplify the question, it is supposed that the used products can only be recycled and remanufactured once; the consumers in the demand markets evaluate the new product and remanufacturing product differently, thus the prices paid to the two kinds of product are different. Using the variational inequality and other theories, the equilibrium condition of the manufacturers and retailers are obtained, and then the integrated supply chain network equilibrium model is formulated. The modified projection and contraction method is employed to solve model. The numerical examples are provided to analyze the impacts of remanufacturing invest factor of remanufactureabale design level, the factor of consumers evaluation for the remanufactured products, the lowest regulation remanufactureable design level on the supply chain network equilibrium results. The results show that enterprises should increase the invest in the remanufactureabale design activity, when the evaluation of consumers for the remanufacturing products increases, the profit of manufacturers decreases at beginning and then increases. And these managerial insights can provide some references in the decision process of remanufactureable design level of manufacturers and related sectors of government.

参考文献

[1] Savaskan R C, Bhattacharya S, Wassenhove L N V. Closed-loop supply chain models with product remanufacturing[J]. Management Science, 2004, 50(2):239-252.

[2] Margarete A S, Ken P. Meeting the closed-loop challenge:The case of remanufacturing[J]. California management review, 2004, 46(2):74-89.

[3] 王文宾, 张雨, 范玲玲, 等. 不同政府决策目标下逆向供应链的奖惩机制研究[J]. 中国管理科学, 2015, 23(7):68-76.

[4] Toffel M W. Strategic management of product recovery[J]. California Management Review, 2004, 16(2):120-141.

[5] Giuntini R, Gaudette K. Remanufacturing:The next great opportunity for boosting US productivity[J]. Business Horizons, 2003, 46(6):41-48.

[6] 郭军华,李帮义,倪明. WTP差异下的再制造进入决策研究[J]. 中国管理科学, 2013,21(1):149-156.

[7] Atasu A, Guide Jr V D R, Wassenhove Van L N. So what if remanufacturing cannibalizes my new product sales?[J]. California Management Review, 2010, 52(2):56-76.

[8] Martin P, Guide Jr V D R. Craighead. Supply chain sourcing in remanufacturing operations:An empirical investigation of remake versus buy[J]. Decision Sciences, 2010, 41(2):301-324.

[9] 孙浩, 叶俊, 胡劲松, 等. 不同决策模式下制造商与再制造商的博弈策略研究[J].中国管理科学, 2017, 25(1):160-168.

[10] Benn S, Dunphy D. A case of strategic sustainability:The Fuji Xerox eco manufacturing centre[J]. Innovation Management Policy & Practice, 2004, 6(2):258-268.

[11] Deutsch C H. Second time around, and around:Remanufacturing is gaining ground in corporate America[N]. New York Times, 1998, July 14.

[12] Hatcher G D, Ijomah W L, Windmill J F C. Design for remanufacturing in China:A case study of electrical and electronic equipment[J]. Journal of Remanufacturing, 2013, 3(3):1-11.

[13] Xu Zhizheng, Wang Yishou, Teng Zhenru, et al. Low-carbon product multi-objective optimization design for meeting requirements of enterprise, user and government[J]. Journal of Cleaner Production, 2015, 103:747-758.

[14] Yang S S, Ong S K, Nee A Y C. A decision support tool for product design for remanufacturing[C]. Procedia CIRP, 2016, 40:144-149.

[15] Gehin A., Zwolinski P., Brissaud D. A tool to implement sustainable end-of-life strategies in the product development phase[J]. Journal of Cleaner Production, 2008, 16(5):566-576.

[16] Atasu A., Guide V D R, Van Wassenhove L.N. Product reuse economics in closed-loop supply chain research[J]. Production Operation Management, 2008, 17(5):483-496.

[17] Guide V D R, Li K J. The potential for cannibalization of new product sales by remanufactured products[J]. Decision Science, 41(3):547-572.

[18] Subramanian R., Subramanyam R. Key factors in the market for remanufactured products[J]. Manufacturing & Service Operations Management, 2012, 14(2):315-326.

[19] 高攀, 王旭, 景熠, 等. 基于异质需求的再制造与翻新产品差异定价策略[J]. 计算机集成制造系统, 2014,20(9):2134-2145.

[20] 李新然, 何琦, 牟宗玉. 差别定价闭环供应链协调应对生产成本扰动研究[J]. 中国管理科学, 2015, 23(10):113-124.

[21] Nagurney A, Cruz J, Dong J, et al. Supply chain networks electronic commerce and supply side and demand side risk[J]. European Journal of Operational Research. 2005, 164(2):120-142.

[22] Hammond D, Beullens P. Closed-loop supply chain network equilibrium under legislation[J]. European Journal of Operational Research, 2007, 183(2):895-908.

[23] Yang Guangfen, Wang Zhiping, Li Xiaoqiang. The optimization of the closed-loop supply chain network[J]. Transportation Research Part E, 2009,45(1):16-28.

[24] 杨玉香, 周根贵. EPR下供应链网络报废产品排放内生污染税模型[J]. 管理科学学报, 2011, 14(10):67-76.

[25] Zhang G T, Sun H, Hu J S, Dai G X. The closed-loop supply chain network equilibrium with products lifetime and carbon emission constraints in multiperiod planning horizon[J]. Discrete Dynamics in Nature and Society, 2014, (2):1-6.

[26] 张桂涛, 胡劲松, 王磊,等. 考虑消费者渠道偏好的多期闭环供应链网络均衡[J]. 系统工程理论与实践,2016,36(2):347-362.

[27] Qiang Qiang. The closed-loop supply chain network with competition and design for remanufactureability[J]. Journal of Cleaner Production, 2015, 105:348-356.

[28] 张桂涛, 胡劲松, 孙浩, 等. 具有缺陷产品的闭环供应链网络均衡研究[J]. 中国管理科学, 2013, 21(5):68-79.

[29] He Bingsheng, Xu Ya, Yuan Xiaoming. A logarithmic-quadratic proximal prediction-correction method for structured monotone variational inequalities[J]. Computational Optimization and Applications, 2006, 35(1):19-46.

[30] Nagurney A, Dong J, Zhang Ding.A supply chain network equilibrium model[J]. Transportation Research:Part E, 2002,38(5):281-303.
文章导航

/