[1] Hosking J R M.Fractional differencing[J].Biometrika,1981,68:165-176. [2] Granger C W J,Joyeux R.An Introduction to Long-range Time Series Models and Fractional Differencing[J].Journal of Time Series Analysis,1980,(1):15-30. [3] Breidt F J,Crato N,Lima P.The detection,estimation of long memory in stochastic volatility[J].Journal of Econometrics,1998,83:325-348. [4] Wright J H.A new estimator of fractionally integrated stochastic volatility model[J].Economics Letters,1999,63:295-303. [5] Ruiz E.Quasi-maximum likelihood estimation of stochastic volatility models[J].Journal of Econometrics,1994,63:289-306. [6] Robinson P M.The memory of stochastic volatility models[J].Journal of econometrics,2001,101 (2):195-218. [7] Arteche,Josu.Gaussian semiparametric estimation in ling memory in stochastic volatility and signal plus noise models[J].Journal of econometrics,2004,119 (1):131-154. [8] 苏卫东,张世英.SV模型及其在金融风险防范中的应用[J].天津大学学报(自然科学版),2002,35(3):317-321. [9] Jensen M J.Bayesian inference of long memory dependence in volatility via wavelets[R].Working Paper,Department of Economics,University of Missouri,Columbia,2000. [10] Jensen M J,Whitcher B.Time varying long memory in volatility:detection and estimation with wavelets[R].Working Paper,Department of Economics,University of Missouri,Columbia,2000. [11] 徐梅,张世英.基于小波变换的LMSV模型波动长记忆性估计与检验[J].系统工程学报,2004,19(6):553-558. [12] 徐梅,张世英.基于小波变换的LMSV模型变结构研究[J].系统工程学报,2005,20(3):232-238. [13] 徐梅,张世英.基于小波分析的金融波动分析[J].系统工程理论与实践.2005,25(2):1-9. [14] Percival D B,Walden A T.Wavelet methods for time series analysis[M].Cambridge University Press Cambridge,U.K.2000. [15] Struzik Z R,Siebes A.Wavelet transform based multifractal formalism in outlier detection and localization for financial time series[J].Physica A,2002,309:388-402. [16] Carbone A,Castelli G,Stanley H E.Time-dependent Hurst exponent in financial serics[J].Physisa A,2004,344(1-2):267-271. [17] 何建敏,常松.中国股票市场多重分行游走及其预测[J].中国管理科学,2002,10(3):11-17. [18] 常松,何建敏.基于小波包和神经网络的股票价格预测模型[J].中国管理科学,2001,9(5):8-15. [19] 殷光伟,郑丕谔.应用小波理论进行股市预测[J].系统工程理论方法应用,2004,13(6):543-547. [20] Fan Yanqin,On the approximate decorrelation property of the discrete wavelet transform for fractionaly differenced processes[J].IEEE Transactions on Information Theory,2003,49(2):516-521. [21] Jensen M J.An alternative maximum likelihood estimator of long memory process using compactly supported wavelets[J].Journal of Economic Dynamics & Control,2000,24:361-387. [22] Jensen M J.An approximate wavelet MLE of short and long memory parameters[J].Studies in Nonlinear Dynamics and Econometrics,1999,(3):239-353. [23] Daubechies I.Orthonormal base of compactly supported wavelets[J].Communications on Pure and Applied Mathematics,1988,41:906-996. [24] Cambanis S,Houdre C.On the continuous wavelet transform of second-order random processes[J].IEEE Transactions on Information Theory,1995,41:628-642. [25] Granger C W J,Zhuan Xin Ding.Varieties of Long Memory Models[J].Journal of econometrics,1996,73:61-78. [26] Baillie R T.Long Memory Process and Fractional Integration in Econometrics[J].Journal of econometrics,1996,73:5-59. [27] Wornell G,Oppenheim A.Estimation of fractal signals from noisy measurement using wavelets[J].IEEE Transactions on Signal Processing,1992,40:611-623. |