[1] Richard D.H..The emergence of chaos from classical economic growth[J].Quarterly Journal of Economics,1983,54:201-213. [2] Doyne F.J.,Sidorowich John J..Predicting chaotic time series[J].Physical Review Letters,1987,59:845-848. [3] Henry A.D.I..Prdiction on chaotic nonlinear systems:Methods for time series with broadband fourier spectra[J].Physica,1990,41:1782-1807. [4] Judd K.,Mees A..Modeling chaotic motions of a string from experimental data[J].Physica D,1996,92:221 -236. [5] 叶中行,杨利平.上证指数的混沌特性分析[J].上海交通大学学报,1998,32(3):129-132. [6] 段虎,沈菲.证券市场的混沌研究及相空间预测[J].数量经济技术经济研究,2002,(7):111-114. [7] 郁俊莉,王其文,韩文秀.经济时间序列相空间重构与混沌特性判定研究[J].武汉大学学报(理学版),2004,50(1):33-37. [8] 谢赤,杨妮.汇率行为的混沌性及其分形维描述[J].湖南大学学报(社会科学版),2005,19(5):50-56. [9] 谢赤.利率行为描述与风险管理--利率期限结构及其应用研究[M].湖南人民出版社,2004:7l-73. [10] Packard N.H.,Crutchifield J.P.,Farmer J.D.,Shaw R.S..Geometry from a time series[J].Physical Review Letters,1980,45:712-716. [11] Takens F.Mane,et al.Detecting strange attractors in fluid turbulence.Rand D A,Young L S.Dynamical systems and turbulence[M].Vol.898 of Lecture Notes in Mathematics.Berlin:Springer,1986:366-381. [12] Grassberger and Procaccia.Dimcnsions and entropies of strange attractors from a fluctuating dynamics approach[J].Physics,1984,13:34-54. [13] Theiler J.,Eubank S.Testing for nonlinearity in time series:the mthod of surrogate data[J].Physica D,1992,58:77-94. [14] Kugiumtzis D.,Lillelqendlie B..State space reconstruction parameters in the analysis of chaotic time series the role of the time window length[J].Physica D.1996,95:13 -28. [15] Cao Liang-yue,Alistair Mees.Practical method for determining the minimum embedding dimension of a scalar time series[J].Physica D,1997,110:43-50. |