[1] 熊中楷,曹俊,刘克. 基于动态博弈的闭环供应链回收质量控制研究[J]. 中国管理科学, 2007,15(4):42-50. [2] 刘海军,陈菊红. 基于不可修复缺陷情境下的供应链模糊回购契约[J]. 控制与决策, 2010,25(8):1155-1158. [3] 周若虹,张雪峰. 基于无缺陷退货的闭环供应链网络均衡模型[J].曲阜师范大学学报,2011,37(2):40-45. [4] Chung C J, Wee H M. Short life-cycle deteriorating product remanufacturing in a green supply chain inventory control system[J]. International Journal of Production Economics, 2011, 129:195-203. [5] 孙浩,达庆利.制造/再制造集成物流网络设施选址问题研究[J]. 计算机集成制造系统,2009,15(2):362-368. [6] 李新军,达庆利.再制造条件下闭环供应链效益分析[J].机械工程学报,2008,44(5):170-174. [7] 晏妮娜,黄小原,刘兵. 电子市场环境中供应链双源渠道主从对策模型[J]. 中国管理科学, 2007,15(3):98-102. [8] 雷延军,李向阳.基于风险与双渠道的全球供应链"超网络"均衡优化模型研究[J]. 中国管理科学, 2006,14(Special Issue):523-528. [9] 张铁柱,周倩.双渠道多期供应链网络均衡模型研究[J].计算机集成制造系统,2008,14(8):1512-1520. [10] Nagurney A, Zhao Lan. Disequilibrium and variational inequalities [J]. Journal of Computational and Applied Mathematics, 1990, 33(2):181-198. [11] Nagurney A, Zhao Lan. Vatiational inequalities and networks in the formulation and computation of market equilibrium and disequilibria: the case of direct demand functions [J].Transportation Science, 1993, 27(1):4-15. [12] Nagurney A, Dong J, Zhang Ding.A supply chain network equilibrium model [J]. Transportation Research: Part E, 2002, 38(5):281-303. [13] Dong J, Zhang Ding, Nagurney A. A supply chain network equilibrium model with random demand [J]. European Journal of Operational Research, 2004, 156(1):194-212. [14] Nagurney A,Cruz J,Dong J,et al.Supply chain networes,electronic commerce,and supply side and demand side risk[J].European Journal of Operational Research,2005,164(2):120-142.. [15] Zhao Lan, Nagurney A. A network equilibrium framework for Internet advertising: Models, qualitative analysis, and algorithms [J]. European Journal of Operational Research, 2008, 187:456-472. [16] Meng Qiang, Huang Yikai, Cheu R L. Competitive facility location on decentralized supply chains [J].European Journal of Operational Research, 2009, 196(2): 487-99. [17] Hamdouch Y. Multi-period supply chain network equilibrium with capacity constraints and purchasing strategies [J]. Transportation Research Part C, 2011, 19: 803-820. [18] Yang Guangfen, Wang Zhiping, Li Xiaoqiang. The optimization of the closed-loop supply chain network [J].Transportation Research Part E, 2009, 45(1):16-28. [19] 张铁柱,刘志勇,滕春贤,等.多商品流供应链网络均衡模型的研究[J].系统工程理论与实践, 2005, 25 (7): 61-66. [20] Teng Chunxian, Yao Fengmin, Hu Xianwu. Study on muti-commodity flow supply chain network equilibrium model with random demand[J]. Systems Engineering-Theory&Practice, 2007, 27(10):77-83. [21] Xu Bing, Zhu Daoli. Multi-commodity flow supply chain network equilibrium model with stochastic choice[J]. Systems Engineering-Theory&Practice, 2007, 27(3): 82-90, 104. [22] 董晨,陈国华.供应链网络均衡模型研究[J].物流技术,2008,7:23-27. [23] 刘诚,李伟,翟攀.随机需求条件下闭环供应链网络均衡[J].系统工程,2008,26(8):11-16. [24] 董琼,马军.供应链超网络均衡模型[J].上海理工大学学报,2011,33(3):238-247. [25] 陈兆波,滕春贤,姚锋敏. 考虑服务水平的供应链网络动态模型研究[J].管理工程学报,2011,25(1):121-127. [26] Korpelevich G M. The extra gradient method for finding saddle points and otherproblems [J]. Matekon, 1977, 13:35-49. [27] He Bingsheng, Xu Ya, Yuan Xiaoming. A logarithmic-quadratic proximal prediction-correction method for structured monotone variational inequalities [J]. Computational Optimization and Applications, 2006, 35(1):19-46. |