[1] Neumann J V, Morgenstern O. Theory of game and economic behavior[M]. Princeton:Princeton University Press, 1994. [2] Nash J. Equilibrium point in N-person games[J]. Proceedings of the National Academy of Sciences, 1950(36): 48-49. [3] Nash J. Noncooperative games[J]. The Annals of mathematics, 1951(54): 286-295. [4] Aubin J P. Mathematical methods of games and economic theory [M]. Amsterdam:North-Holland, 1982. [5] Yu Jian. Essential equilibria of n-person noncooperative Games[J]. Journal of Mathematical Economics, 1999 (31): 361-372. [6] Yu Jian, Yuan Xianzhi.. The study of Pareto equilibria for multiobjective games by fixed point and Ky Fan minimax inequality methods[J]. Computers Mathematics with Applications, 1998, 35(9): 17-24. [7] Harker P T. Generalized Nash games and quasi-variational inequalities [J]. European Journal of Operational Research, 1991, 54(1): 81-94. [8] Facchinei F, Fischer A, Piccial-li V. On generalized Nash games and variational inequalities [J]. Operations Research Letters, 2007, 35(2): 159-164. [9] Kim W K, Yuan Xianzhi. Existence of equilibria for generalized games and generalized social systems with coordination[J]. Nonlinear Functional Analysis and Applications,1998,3:77-102. [10] Kim W K, Lee K H. Generalized fuzzy games and fuzzy equilibria[J]. Fuzzy Sets and Systems, 2001, 122(2): 293-301. [11] Yuan Xianzhi. The existence of equilibria for noncompact generali-zed games[J]. Applied Mathematics Letters, 2000, 13(1): 57-63. [12] Hou Jicheng. Existence of equilibria for generalized games without parcompactness[J]. Nonlinear Analysis, 2004, 56(4): 625-632. [13] Llinares J V. Existence of equilibrium in generalized games with abstract convexity structure [J]. Journal of Optimization Theory and Applications, 2000, 105(1): 149-160. [14] Hou Jicheng. An existence theorem of equilibrium for generalized games in H-spaces [J]. Applied Mathematics Letters, 2003, 16(1): 97-103. [15] Cubiotti P. Existence of nash equilibria for generalized games without upper semicontinuity[J]. International Journal of Game Theory, 1997, 26(2): 267-273. [16] Cubiotti P,Yao J C. Nash equilibria of generalized games in normed spaces without upper semicontinuity[J]. Journal of Global Optimization, 2010, 46(4): 509-519. [17] Ding Xieping, Yuan Xianzhi. The study of existence of equilibria for generalized games without lower semicontinuity in locally topologi/cal vector spaces[J]. Journal of Mathematical Analysis and Applica- tions, 1998, 227(2): 420-438. [18] Facchinei F, Fischer A , Piccialli V. Generalized Nash equilibrium problems and Newton methods[J]. Mathematical Programm ing, 2009, 117(1-2): 163-194. [19] Lin Zhi, Yu Jian. On well-posedness of the multiobjective generalized game[J]. Applied Mathematics-A Journal of Chinese Universities, 2004, 19(3): 327-334. [20] Lin Zhi. Essential components of the set of weakly pareto-Nash equilibrium points for multiobjective generalized games in two different topological spaces[J]. Journal of Optimization Theory and Applications, 2005, 124(2): 387-405. [21] Song Qiqing, Wang Laisheng. On the stability of the solution for multiobjective generalized games with the payoffs perturbed[J]. Nonlinear Analysis, 2010, 73(8): 2680-2685. [22] Zhukovskii V I. Linear quadratic differential games[M]. Naoukova Doumka: Kiev, 1994. [23] Larbani M, Lebbah H. A concept of equilibrium for a game under uncertainty [J]. European J of Operational Research, 1999, 117(1): 145-156. [24] 张会娟, 张强.不确定性下非合作博弈强Nash均衡的存在性[J]. 控制与决策, 2010, 25(8): 1251-1254. [25] 张会娟, 张强. 不确定性下非合作博弈简单Berge均衡的存在性[J].系统工程理论与实践, 2010, 30(9): 1630-1635. [26] 杨哲,蒲勇健. 不确定性下多主从博弈中均衡的存在性[J].控制与决策,2012, 27(5):736-740. [27] 俞建. 博弈论与非线性分析[M]. 北京:科学出版社,2008. [28] Aubin J P, Ekeland I. Applied nonlinear analysis[M]. New York:John Wiley and Sons Inc, 1984. |