[1] 中国保监监督管理委员会."5.12"汶川特大地震保险理赔工作基本完成[EB/OL] .(2009-05-11). http://www.circ.gov.on/tabid/106/InfoID/100457/frtid/3871/Default.aspx. [2] Cummins J D, German H. An Asian option approach to the valuation of insurance futures contracts[R]. Working Papers, Wharton Financial Institutions, 1993. [3] Cummins J D, German H. Pricing catastrophe insurance futures and call spreads: An arbitrage approach[J]. Journal of Fixed Income, 1995, 4(March):46-57. [4] Chang W C, Chang S K J, Lu W. Pricing and hedging catastrophe-linked risk in discrete time[J]. Insurance: Mathematics and Economics, 2008, 43: 422-430. [5] German H, Yor M. Stochastic time changes in catastrophe option pricing[J]. Insurance: Mathematics and Economics, 1997, 21: 185-193. [6] Chang W C, Chang S K J, Yu M. Pricing catastrophe insurance futures call spreads: A randomized operational time approach[J]. Journal of Risk and Insurance, 1996, 63(4):599-617. [7] Biagini F, Bregman Y, Meyer-Brandis T. Pricing of catastrophe insurance options written on a loss index with reestimation[J]. Insurance: Mathematics and Economics, 2008, 43(2): 214-222. [8] Wu Yangche, Chung S L. Catastrophe risk management with counterparty risk using alternative instruments[J]. Insurance: Mathematics and Economics. 2010, 47(2):234-245. [9] Aase K K. An equilibrium model of catastrophe insurance futures and spreads[J]. The Geneva Papers on Risk and Insurance Theory, 1999, 24(1), 69-96. [10] Aase K K. A Markov model for the pricing of catastrophe insurance futures and spreads[J]. Journal of Risk and Insurance, 2001, 68(1):25-50. [11] Young V R. Pricing in an incomplete market with an affine term structure[J]. Mathematical Finance, 2004, 14(3): 359-381. [12] Young V R, Zariphopoulou T. Pricing dynamic insurance risks using the principle of equivalent utility[J]. Scandinavian Actuarial Journal, 2002, 4:246-279. [13] Hobson D, Henderson V. Utility indifference pricing-an overview[M]//Carmona R. Indifference pricing: Theory and applications Princeton: Princeton University Press, 2009. [14] Lim T, Quenez M C. Portfolio optimization in a defaults model under full/partial information[J]. Quantitative Finance, 2010. [15] Elliott R J, Siu T K. A stochastic differential game for optimal investment of an insurer with regime switching[J]. Quantitative Finance, 2011, 11(3): 365-380. [16] Chen An, Pelsser A, Vellekoop M. Modeling non-monotone risk aversion using SAHARA utility functions[J]. Journal of Economic Theory, 2011, 146(5):2075-2092. [17] Ikefuji M, Laeven R J A, Magnus J R, et al. Expected utility and catastrophic risk in a stochastic economy-climate model[R]. CentER Discussion Paper Series, 2010. [18] 尚勤, 秦学志, 周颖颖, 巨灾死亡率债券定价模型研究[J].系统工程学报, 2010, 25(2):203-208. [19] 丁波, 巴曙松.中国地震巨灾期权定价机制研究[J].中国管理科学, 2010, 18(15): 34-39. [20] Buhlmann H. An economic premium principle[J]. ASTIN Bulletin, 1980, 11(1): 52-60. [21] Mürmann A. Pricing catastrophe insurance derivatives[R]. Discussion Paper, Financial Markets Group, 2001. [22] Mürmann A. Actuarially consistent valuation of catastrophe derivatives[J]. Working paper, 2003. [23] Mürmann A. Market price of insurance risk implied by catastrophe derivatives[J]. North American Actuarial Journal, 2006, 12(3), 221-227. [24] Canter M S, Cole J B, Sandor R L. Insurance derivatives: A new asset class for the capital markets and a new hedging tool for the insurance industry[J]. Journal of Applied Corporate Finance, 1997, 10(3), 69-83. [25] Davis M H A. Option pricing in incomplete markets[M]//Dempster M A H, Pliska S R. Mathematics of derivatives securities. Cambridge: Cambridge University Press, 1997. [26] Froot K A. The market for catastrophe risk: A clinical examination[J]. Journal of Finance Economics, 2001, 60, 529-571. [27] Hoyt R E, McCullough K A. Catastrophe insurance options: Are they zero-beta assets?[J]. Journal of Insurance Issues, 1999, 22(2), 147-163. [28] Beard R E, Pentikinen T, Pesonen E. Risk theory: The stochastic basis of insurance[M]. London: Chapman and Hall, 1984. [29] Beekman J A. Two stochastic processes[J]. Stockholm: Almqvist & Wiksell, 1974. [30] Breiman L. Probability[M]. Menlo Park, Calif.: Addison-Wesley, 1968. [31] Feller W. An introduction to probability theory and its applications[M]. New York: Wiley, 1971. [32] Huebner S S. Foundation monograph series[M]. Homewood, Ill.: Irwin, 1979. [33] Jensen J L. Saddle point approximations to the distribution of the total claim amount in some recent risk models[J]. Scandinavian Actuarial Journal, 1991, (2):154-68. [34] Seal H L. The stochastic theory of a risk business[J]. New York: Wileym, 1969. |