[1] Raafat F. Survey of literature on continuously deteriorating inventory models[J]. The Journal of the Operational Research Society, 1991, 42(1): 27-37. [2] Goyal S K, Giri B C. Recent trends in modeling of deteriorating inventory[J]. European Journal of Operational Research, 2001, 134(1): 1-16. [3] Ghare P M, Schrader G F. A model for exponentially decaying inventories[J]. Journal of Industrial Engineering, 1963, 14(5):238-243. [4] Covert R P, Philip G C. An EOQ model for items with Weibull distribution deterioration[J]. AⅡE Transactions, 1973, 5(4): 323-326. [5] Shah Y K. An order-level lot-size inventory for deteriorating items[J]. AⅡE Transactions, 1977, 9: 108-112. [6] Dave U, Patel L K. (T, Si) policy inventory model for deteriorating items with time proportional demand[J]. Journal of the Operational Research Society, 1981, 32: 137-142. [7] Chakrabarti T, Chaudhuri K S. An EOQ model for deteriorating items with a linear trend in demand and shortages in all cycles[J]. Interational Journal of Production Economics, 1997, 49(3): 205-213. [8] Papachristos S, Skouri K. An optimal replenishment policy for deteriorating items with time-varying demand and partial-exponential type-backlogging[J]. Operations Research Letters, 2000, 27: 175-184. [9] 郑惠莉, 达庆利. 一种需求和采购价均为时变的EOQ模型[J]. 中国管理科学, 2003, 11(5):26-30. [10] 郑惠莉, 达庆利. 需求和采购价均为时变的改进EOQ模型[J]. 系统工程理论方法应用, 2004, 13(4):305-309. [11] 罗兵, 杨帅, 李宇雨. 变质物品在存货影响销售率、需求和采购价均为时变时的EOQ模型[J]. 工业工程与管理, 2005, 3:40-44. [12] 罗兵, 杨帅, 熊中楷. 短缺量拖后率、需求和采购价均为时变的变质物品EOQ模型[J].中国管理科学, 2005, 13(3):44-49. [13] 黄波, 孟卫东, 熊中楷. 需求、价格和变质系数均为时变的EOQ模型[J]. 工业工程与管理, 2008, 4:93-98. [14] Cohen M A. Joint pricing and ordering policy for exponentially decaying inventory with known demand[J]. Naval Research Logistics Quarterly, 1977, 24: 257-268. [15] Chen J M, Chen L T. Pricing and lot-sizing for a deteriorating item in a periodic review inventory system with shortages[J]. Journal of the Operational Research Society, 2004, 55(8): 892-901. [16] Ghen Xin, Simchi-Levi D. Coordinating inventory control and pricing strategies with random demand and fixed ordering cost: the finite horizon case[J]. Operations Research, 2004, 52(6): 887-896. [17] Hsieh T P, Dye C Y. Pricing and lot-sizing policies for deteriorating items with partial backlogging under inflation[J]. Expert Systems with Applications, 2010, 37: 7234-7242. [18] 彭作和, 田澎. 考虑货币时间价值的变质商品临时价格折扣模型[J].系统工程理论与实践, 2004, 9:1-8. [19] Sana S, Goyal S K, Chaudhuri K S. A production-inventory model for a deteriorating item with trended demand and shortages[J]. European Journal of Operational Research, 2004, 157(2): 357-371. [20] Diponegoro A, Sarker B R. Finite horizon planning for a production system with permitted shortage and fixed-interval deliveries[J]. Computers & Operations Research, 2006, 33(8): 2387-2404. [21] Diponegoro A, Sarker B R. Operations policy for a supply chain system with fixed interval delivery and linear demand[J]. Journal of the Operational Research Society, 2007, 58(7): 901-910. [22] Yang H L. A partial backlogging production-inventory lot-size model for deteriorating items with time-varying production and demand rate over a finite time horizon[J]. International Journal of Systems Science, 2011, 42(8): 1397-1407. [23] Box M J. A new method of constrained optimization and a comparison with other methods[J]. Computer Journal, 1965, 8(1): 42-52. [24] Abad P L. Optimal price and order size under partial backordering incorporating shortage, backorder and lost sale costs[J]. International Journal of Production Economics, 2008, 114(1): 179-186. |